Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 036403    DOI: 10.1088/1674-1056/ad0cc7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model

Ting-Yu Liu(刘婷玉)1, Wei Zhao(赵薇)1, Tao Wang(王涛)1, Xiao-Dong An(安小冬)1, Lai Wei(卫来)1,†, and Yi-Neng Huang(黄以能)1,2,‡
1 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yili 835000, China;
2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210008, China
Abstract  Fractional molecular field theory (FMFT) is a phenomenological theory that describes phase transitions in crystals with randomly distributed components, such as the relaxor-ferroelectrics and spin glasses. In order to verify the feasibility of this theory, this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional (2D) random-site Ising model (2D-RSIM). The results indicate that the FMFT deviates from the 2D-RSIM significantly. The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution, where the real order parameter is spatially heterogeneous and has no symmetry of space translation, but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
Keywords:  phase transition      molecular field theory      Ising model      Monte Carlo  
Received:  18 August 2023      Revised:  31 October 2023      Accepted manuscript online:  16 November 2023
PACS:  64.60.Bd (General theory of phase transitions)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  77.80.Jk (Relaxor ferroelectrics)  
  75.50.Lk (Spin glasses and other random magnets)  
Fund: Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D04015) and the Yili Kazakh Autonomous Prefecture Science and Technology Program Project, China (Grant No. YZ2022B021).
Corresponding Authors:  Lai Wei, Yi-Neng Huang     E-mail:  lweiphy@sina.com;ynhuang@nju.edu.cn

Cite this article: 

Ting-Yu Liu(刘婷玉), Wei Zhao(赵薇), Tao Wang(王涛), Xiao-Dong An(安小冬), Lai Wei(卫来), and Yi-Neng Huang(黄以能) Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model 2024 Chin. Phys. B 33 036403

[1] Megaw H D 1947 Proc. Roy. Soc. London A 189 261
[2] Vonhippel A 1950 Rev. Mod. Phys. 22 221
[3] Stephenson C C and Hooley J G 1944 J. Am. Chem. Soc. 66 1397
[4] Mason W P 1946 Phys. Rev. 69 173
[5] Pallister P R 1949 J. Iron Steel Inst. 161 87
[6] Ododo J C 1977 Sol. Stat. Comm. 22 585
[7] Bovtun V, Veljko S, Kamba S, Petzelt J, Vakhrushev S, Yakymenko Y, Brinkman K and Setter N 2006 J. Eur. Cera. Soc. 26 2867
[8] Zhao X, Qu W, Tan X, Bokov A A and Ye Z G 2007 Phys. Rev. B 75 104106
[9] Tachibana M, Sasame K, Kawaji H, Atake T and Takayama-Muromachi E 2009 Phys. Rev. B 80 94115
[10] Smolenskii G A and Rozgachev K I 1954 Z. Tekhn. Fiziki 24 1751
[11] Maiti T, Guo R and Bhalla A S 2008 J. Am. Cera. Soc. 91 1769
[12] Petzelt J, Bovtun V, Nuzhnyy D, Kempa M, Savinov M, Pasciak M, Kamba S, Canu G and Buscaglia V 2021 Phys. Stat. Sol. B 258 210025910
[13] Coles B R, Sarkissian B V B and Taylor R H 1978 Phil. Mag. B 37 489
[14] Belik A A, Yokosawa T, Kimoto K, Matsui Y and and Takayama-Muromachi E 2007 Chem. Mat. 19 1679
[15] Belik A A and Takayama-Muromachi E. 2008 J. Phys.: Condens. Matter 20 025211
[16] Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin, H, Bernholc J, Chen X, Chen L Q, Hong L and Zhang Q M 2021 Nature 600 664
[17] Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q and Chen L Q 2018 J. Am. Cera. Soc. 101 1566
[18] Gao R, Shi X, Wang J, Zhang G and Huang H 2021 Adv. Fun. Mater. 31 2104393
[19] Gao R, Shi X, Wang J and Huang H 2022 J. Am. Cera. Soc. 105 3689
[20] Liu N, Huang S, Li J Q and Liang J Q 2019 Acta Phys. Sin. 68 193701 (in Chinese)
[21] Weiss P 1908 Phys. Z 9 358
[22] Yin H, Zhou H and Huang Y 2019 Chin. Phys. Lett. 36 070501
[23] Landau L 1936 Nature 138 840
[24] Devonshire A F 1949 Phil. Mag. 40 1040
[25] Devonshire A F 1951 Phil. Mag. 42 1065
[26] Devonshire A F 1954 Adv. Phys. 3 85
[27] Ising E 1925 Z. Phys. 31 253
[28] Heisenberg W 1928 Z. Phys. 49 619
[29] Bethe H A 1938 J. Appl. Phys. 9 244
[30] Onsager L 1944 Phys. Rev. 65 117
[31] Yang C N 1952 Phys. Rev. 85 808
[32] Wilson K G and Fisher M E 1972 Phys. Rev. Lett. 28 240
[33] Kadanoff L P 1975 Phys. Rev. Lett. 34 1005
[34] Klein M W and Brout R 1963 Phys. Rev. 132 2412
[35] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[36] Edwards S F and Anderson P W 1975 J. Phys. F 5 965
[37] Zhang L L and Huang Y N 2020 Sci. Rep. 10 5060
[38] Kuehn M and Kliem H 2010 Ferroelectrics 400 52
[39] Shvartsman V V, Kleemann W, Lukasiewicz T and Dec J 2008 Phys. Rev. B 77 054105
[40] Shvartsman V V, Dkhil B and Kholkin A L 2013 Ann. Rev. Mat. Res. 43 423
[41] Tian Z N, Ouyang X P, Chen W, Wang X M, Deng N, Liu W B and Tian Y J 2019 Acta Phys. Sin. 68 232901 (in Chinese)
[42] Chen Z, Zhao Z J, Lü Z L, Li J H and Pan D M 2019 Acta Phys. Sin. 68 215201 (in Chinese)
[43] Kurt B 1986 Monte Carlo methods in statistical physics (Heidelberg: Springer Berlin) p. 4
[44] Glauber R J 1963 J. Math. Phys. 4 294
[45] Shvartsman V V and Lupascu D C 2012 J. Am. Cera. Soc. 95 1
[1] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[2] Analysis of pseudo-random number generators in QMC-SSE method
Dong-Xu Liu(刘东旭), Wei Xu(徐维), and Xue-Feng Zhang(张学锋). Chin. Phys. B, 2024, 33(3): 037509.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[5] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[6] Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
Bin Zhang(张彬), Hao Jiang(姜昊), Xiao-Dong Xu(徐晓东), Tao Ying(应涛), Zhong-Li Liu(刘中利), Wei-Qi Li(李伟奇), Jian-Qun Yang(杨剑群), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2024, 33(1): 016106.
[7] Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3
Jie Li(李杰), Yinan Chen(陈一楠), Nuo Gong(宫诺), Xin Huang(黄欣), Zhihong Yang(杨志红), and Yakui Weng(翁亚奎). Chin. Phys. B, 2024, 33(1): 017502.
[8] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[9] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[10] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[11] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[12] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[13] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[14] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[15] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
No Suggested Reading articles found!