CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure |
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉)† |
College of Big Data and Information Engineering, Institute of New Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, China |
|
|
Abstract Recently, the newly synthesized septuple-atomic layer two-dimensional (2D) material MoSi2N4 (MSN) has attracted attention worldwide. Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene (Gr) heterostructure using first-principles calculation. We find that four types of defective structures, N-in, N-out, Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air. Moreover, vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure. Finally, the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts. Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
|
Received: 05 May 2023
Revised: 03 August 2023
Accepted manuscript online: 11 August 2023
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015). |
Corresponding Authors:
Quan Xie
E-mail: qxie@gzu.edu.cn
|
Cite this article:
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉) Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure 2024 Chin. Phys. B 33 037101
|
[1] Sangwan V K and Hersam M C 2018 Annu. Rev. Phys. Chem. 69 299 [2] Duerloo K A N, Ong M T and Reed E J 2012 J. Phys. Chem. Lett. 3 2871 [3] Taft E and Philipp H 1965 Phys. Rev. 138 A197 [4] Zhu X, Li F, Wang Y, Qiao M and Li Y 2018 J. Mater. Chem. C 6 4494 [5] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T and Li Y 2017 Extreme Mech. Lett. 13 42 [6] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [7] Li D and Kaner R B 2008 Science 320 1170 [8] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102 [9] Kan E, Ren H, Wu F, Li Z, Lu R, Xiao C, Deng K and Yang J 2012 J. Phys. Chem. C 116 3142 [10] Neupane H K and Adhikari N P 2021 Nepal J. Sci. Technol. 20 55 [11] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061 [12] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 [13] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423 [14] Wang Y, Ye M, Weng M, Li J, Zhang X, Zhang H, Guo Y, Pan Y, Xiao L and Liu J 2017 ACS Appl. Mater. Interfaces 9 29273 [15] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [16] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [17] Liang Q, Zhang Q, Zhao X, Liu M and Wee A T 2021 ACS Nano 15 2165 [18] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y and Zhang H 2012 Nano Lett. 12 1538 [19] Li H, Wu J, Yin Z and Zhang H 2014 Acc. Chem. Res. 47 1067 [20] Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C and Zhang Y 2014 ACS Nano 8 10196 [21] Liu X, Wang Y, Yang Y, Lv W, Lian G, Golberg D, Wang X, Zhao X and Ding Y 2020 Nano Energy 70 104550 [22] Nourbakhsh A, Zubair A, Sajjad R N, Tavakkoli KG A, Chen W, Fang S, Ling X, Kong J, Dresselhaus M S and Kaxiras E 2016 Nano Lett. 16 7798 [23] Jiao Y, Hafez A M, Cao D, Mukhopadhyay A, Ma Y and Zhu H 2018 Small 14 1800640 [24] Kumar R, Zheng W, Liu X, Zhang J and Kumar M 2020 Adv. Mater. Technol. 5 1901062 [25] Zhang X, Zhang R, Niu S, Zheng J and Guo C 2019 Appl. Surf. Sci. 475 355 [26] Huang Z, Han W, Tang H, Ren L, Chander D S, Qi X and Zhang H 2015 2D Mater. 2 035011 [27] Mikhaleva N S, Visotin M A, Kuzubov A A and Popov Z I 2017 J. Phys. Chem. C 121 24179 [28] Neupane H and Adhikari N 2020 Comput. Condens. Matter 24 e00489 [29] Neupane H K and Adhikari N P 2021 J. Mol. Model. 27 1 [30] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L and Sun D M 2020 Science 369 670 [31] Lu S, Zhang Y, Lou F, Guo K and Yu Z 2022 Appl. Surf. Sci. 579 152234 [32] Nguyen C V, Nguyen C Q, Nguyen S T, Ang Y S and Hieu N V 2022 J. Phys. Chem. Lett. 13 2576 [33] Xiao C, Sa R, Cui Z, Gao S, Du W, Sun X, Zhang X, Li Q and Ma Z 2021 Appl. Surf. Sci. 563 150388 [34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Blöchl P E 1994 Phys. Rev. B 50 17953 [38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 [39] Yang C, Song Z, Sun X and Lu J 2021 Phys. Rev. B 103 035308 [40] Wu Q, Cao L, Ang Y S and Ang L K 2021 Appl. Phys. Lett. 118 [41] Nie S, Bartelt N C, Wofford J M, Dubon O D, McCarty K F and Thürmer K 2012 Phys. Rev. B 85 205406 [42] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716 [43] Kwon J, Lee J Y, Yu Y J, Lee C H, Cui X, Hone J and Lee G H 2017 Nanoscale 9 6151 [44] Vicario C, Monoszlai B and Hauri C P 2014 Phys. Rev. Lett. 112 213901 [45] Bokdam M, Khomyakov P A, Brocks G, Zhong Z and Kelly P J 2011 Nano Lett. 11 4631 [46] Sachs B, Britnell L, Wehling T, Eckmann A, Jalil R, Belle B, Lichtenstein A, Katsnelson M, Novoselov K 2013 Appl. Phys. Lett. 103 25 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|