Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016104    DOI: 10.1088/1674-1056/acf303
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect

Ya-Hui Feng(冯亚辉)1, Hong-Xia Guo(郭红霞)2,4,†, Yi-Wei Liu(刘益维)2, Xiao-Ping Ouyang(欧阳晓平)1,4, Jin-Xin Zhang(张晋新)3, Wu-Ying Ma(马武英)4, Feng-Qi Zhang(张凤祁)4, Ru-Xue Bai(白如雪)2, Xiao-Hua Ma(马晓华)1, and Yue Hao(郝跃)1
1 State Key Laboratory of Wide Bandgap Semiconductor Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
3 School of Space Science and Technology, Xidian University, Xi'an 710071, China;
4 State Key Laboratory of Experimental Simulation and Effects of Strong Pulse Radiation, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  The single event effect (SEE) sensitivity of silicon—germanium heterojunction bipolar transistor (SiGe HBT) irradiated by 100-MeV proton is investigated. The simulation results indicate that the most sensitive position of the SiGe HBT device is the emitter center, where the protons pass through the larger collector-substrate (CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-MeV proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly. Notably, at the same proton flux, there is only one single event transient (SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-MeV protons. To further evaluate the tolerance of the device, the influence of proton on SiGe HBT after gamma-ray (60Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
Keywords:  silicon—germanium heterojunction bipolar transistor (SiGe HBT)      100-MeV proton      technology computer-aided design (TCAD)      single event effect (SEE)  
Received:  14 July 2023      Revised:  15 August 2023      Accepted manuscript online:  23 August 2023
PACS:  61.72.uf (Ge and Si)  
  61.80.Ed (γ-ray effects)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574171, 61704127, 11875229, 51872251, and 12027813).
Corresponding Authors:  Hong-Xia Guo     E-mail:  guohxnint@126.com

Cite this article: 

Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃) Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect 2024 Chin. Phys. B 33 016104

[1] Bellini M, Jun B, Sutton A K, Appaswamy A C, Cheng P, Cressler J D, Marshall P W, Schrimpf R D, Fleetwood D M, El Kareh B, Balster S, Steinmann P and Yasuda H 2007 IEEE Trans. Nucl Sci. 54 2245
[2] Chen T, Sutton A K, Bellini M, Haugerud B M, Comeau J P, Liang Q, Cressler J D, Cai J, Ning T H, Marshall P W and Marshall C J 2005 IEEE Trans. Nucl. Sci. 52 2353
[3] Cressler J D, Krithivasan R, Zhang G, Niu G F, Marshall P W, Kim H S, Reed R A, Palmer M J and Joseph A J 2002 IEEE Trans. Nucl. Sci. 49 3203
[4] Cresler J D 2013 IEEE Trans. Nucl. Sci. 60 1992
[5] Pellish J A and Cohn L M 2013 Extreme environment electronics, Eds. Cressler J D and Mantooth H A (Boca Raton, FL:CRC Press) Ch. 6
[6] Davidović D, Ying H, Dark J. Wier B R, Ge L, Lourenco N E, Omprakash A P, Mourigal M and Cressler J D 2017 Phys. Rev. Appl. 8 024015
[7] Marshall P W, Carts M A and Campbell A 2000 IEEE Trans. Nucl. Sci. 47 2669
[8] Ramachandran V, Gadlage M J, Ahlbin J R, Narasimham B, Alles M L, Reed R A, Bhuva B L, Massengill L W, Black J D and Foster C N 2010 Solid-State Electronics. 54 1052
[9] Huang Y T, C X H, Yang J Q, Ying T, Yu X Q, Dong L, Li W Q and Li X J 2022 Chin. Phys. B 31 028502
[10] Li P 2019 Enhanced low dose rate sensitivity of silicon-germanium heterojunction bipolar transistor, Ph. D. dissertation (Xi'an:Xi'an Jiaotong University Press)
[11] Kim H Y, Lo C F, Liu L, Ren F, Kim J and Pearton S J 2022 Appl. Phys. Lett. 100 012107
[12] Laird J S, Hirao T, Onoda S, Mori H and Itoh H 2002 IEEE Trans. Nucl. Sci. 49 1389
[13] Nergui D, Ildefonso A, Tzintzarov G N, Lourenco N E, Omprakash A P, Goley P S, Fleetwood Z E, LaLumondiere S D, Bonsall J P, Monahan D M, Kettering H, Brewe D L and Cressler J D 2020 IEEE Trans. Nucl. Sci. 67 91
[14] Luo J H, Wang Y, Bao M T, Li X J, Yang J Q and Cao F 2022 IEEE Trans. Dev. Mater. Reliab. 22 431
[15] Zhou J C, Wang Y, Li X J, Yang J Q, Bao M T and Cao F 2022 IEEE Trans. Electron Dev. 69 3283
[16] Wei J N, Guo C H, Li P, Li Y H and Guo H X 2019 Chin. Phys. B 28 076106
[17] Varadharajaperumal M, Niu G F, Krithivasan R, Cressler J D, Reed R A, Marshall P W, Vizkelethy G, Dodd P E and Joseph A J 2003 IEEE Trans. Nucl. Sci. 50 2191
[18] Feng Y H, Guo H X, Pan X Y, Zhang J X, Zhong X L, Zhang H, J A A, Liu Y and Ouyang X Y 2022 Chin. Phys. B 32 066105
[19] Sun Y B, Fu J, Wang Y D, Zhou W, Liu Z, Liu X and Shi Y 2016 Microelectron. Reliab. 65 41
[20] Li P, Guo H X, Guo Q, Zhang J X and Wei Y 2015 Chin. Phys. Lett. 32 088505
[21] Niu G F 2010 J. Electrochem. Soc. 33 287
[22] Prakash A P G 2006 IEEE Trans. Nucl. Sci. 53 3175
[23] Cao J, Xu L, Wen S J, Fung R, Narasimham B, Massengill L W and Bhuva B L 2020 IEEE international reliability physics symposium (IRPS) p. 15
[24] Sutton A K, Moen K, Cresser J D, Carts M A, Marshall P W, Pellish J A, Ramachandran V, Reed R A, Alles M L and Niu G F 2008 Solid-State Electron. 52 1652
[25] Guo G, Hirao T, Laird J S, Onoda S, Wakasa T, Yamakawa T and Kamiya T 2004 IEEE Trans. Nucl. Sci. 51 2834
[26] Ying H, Wier B R, Dark J, Lourenco N E, Ge L, Omprakash A P, Mourigal M, Davidovic D and Cresler J D 2017 IEEE Electron Dev. Lett. 38 12
[27] Xu Z Y, Niu G F, Luo L, Cressler J D, Alles M L, Reed R, Mantooth H A, Holmes J and Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3206
[28] Gnana Prakash A P, Hegde V N, Pradeep T M, Pushpa N, Bajpai P K, Patel S P, Trivedi T and Cressler J D 2018 Radiat. Eff. Defects Solids. 172 922
[29] Laird J S, Chen Y, Vo T, Edmonds L, Scheick L and Adell P 2009 IEEE Trans. Nucl. Sci. 56 220
[30] Cressler J D, Comfort J H, Crabbe E F, Patton G L, Stork J M C, Sun J Y C and Meyerson B S 1993 IEEE Trans. Electron Dev. 40 525
[31] Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y and Wu X X 2018 Chin. Phys. B 27 108501
[32] Chen S Y, Y X, Wu L, Yao S, Li X L, Wang X, Liu M H, Xi S X, Wang L B, Sun J, He C F and Guo Q 2020 Chin. Phys. Lett. 37 046101
[33] Teng J W, Ildefonso A, Tzintzarov G N, Ying H, Moradinia A, Wang P F, Liu X, Zhang E X and Fleetwood D M 2021 IEEE Trans. Nucl. Sci. 68 949
[34] Sun Y B, Liu Z Y, Li X J and Shi Y L 2018 Radiat. Phys. Chem. 151 84
[1] Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source
Yuan-Yuan Xue(薛院院), Zu-Jun Wang(王祖军), Wei Chen(陈伟), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Bao-Ping He(何宝平), Xu Nie(聂栩), Shankun Lai(赖善坤), Gang Huang(黄港), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), and Shi-Long Gou(缑石龙). Chin. Phys. B, 2023, 32(7): 076101.
[2] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[3] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
No Suggested Reading articles found!