Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034204    DOI: 10.1088/1674-1056/acf204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation

Zhen-Yu Liang(梁振宇)1,2, Chao-Jin Wang(王朝瑾)1, Yang-Yang Wang(王阳阳)1, Hao-Qi Gao(高皓琪)1, Dong-Tao Zhu(朱东涛)1, Hao-Li Xu(许颢砾)1, and Xing Yang(杨星)1,2,†
1 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230001, China;
2 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230001, China
Abstract  Single-pixel imaging (SPI) can transform 2D or 3D image data into 1D light signals, which offers promising prospects for image compression and transmission. However, during data communication these light signals in public channels will easily draw the attention of eavesdroppers. Here, we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission. This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection. Then the transformation parameters serve as the secret key, while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism. Compared with existing encryption schemes, both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules. Additionally, this approach solves the problem of secure key transmission, thus ensuring the security of information and the quality of the decrypted images.
Keywords:  single-pixel imaging      3D Arnold transformation      elliptic curve encryption      image encryption  
Received:  04 June 2023      Revised:  16 August 2023      Accepted manuscript online:  21 August 2023
PACS:  42.30.-d (Imaging and optical processing)  
  42.68.Sq (Image transmission and formation)  
  07.05.Pj (Image processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075241).
Corresponding Authors:  Xing Yang     E-mail:  yangxing17@nudt.edu.cn

Cite this article: 

Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星) Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation 2024 Chin. Phys. B 33 034204

[1] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Process Mag. 25 83
[2] Ma J W 2009 IEEE Geosci. Remote. Sens. Lett. 6 676
[3] Erkmen B I 2012 J. Opt. Soc. Am. A 29 782
[4] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photonics 13 13
[5] Sun M J and Zhang J M 2019 Sensors 19 732
[6] Chen Y, Yin K, Shi D, Yang W, Huang J, Guo Zi, Yuan K and Wang Y 2022 Appl. Opt. 61 6905
[7] Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S and Situ G 2022 Light Sci. Appl. 11 27
[8] Zhao C, Gong W, Chen M, Li E, Wang H, Xu W and Han S 2012 Appl. Phys. Lett. 101 141123
[9] Chu C, Liu S, Liu Z, Hu C, Zhao Y and Han S 2021 Appl. Opt 60 4632
[10] Li W, Tong Z, Xiao K, Liu Z, Gao Q, Sun J, Liu S, Han S and Wang Z 2019 Optica 6 1515
[11] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901
[12] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[13] Lin J, Yan Q, Lu S, Zheng Y, Sun S and Wei Z 2022 Photonics 9 343
[14] Zhou N R, Zhang A D, Zheng F and Gong L H 2014 Optics and Laser Technology 62 152
[15] Zhang Z B, Ma X and Zhong J G 2015 Nat. Commun. 6 6225
[16] Huynh N, Zhang E, Betcke M, Arridge S, Beard P and Cox B 2016 Optica 3 26
[17] Lyu M, Wang W, Wang H, Wang H, Li G, Chen N and Situ G 2017 Sci. Rep. 7 17865
[18] Higham C F, Murray-Smith R, Padgett M J and Edgar M P 2018 Sci. Rep. 8 2369
[19] Wang F, Wang H, Wang H, Li G and Situ G 2019 Opt. Express 27 25560
[20] Wang F, Wang C, Deng C, Han S and Situ G 2022 Photonics Res. 10 104
[21] Wang F, Wang C, Chen C, Gong W, Zhang Y, Han S and Situ G 2022 Light: Sci. Appl. 11 1
[22] Situ G and Zhang J 2004 Opt. Lett. 29 1584
[23] Liao M, Zheng S, Pan S, Lu D, He W, Situ G and Peng X 2021 Opto-Electronic Advances 4 200016
[24] Zhang Y and Wang B 2008 Opt. Lett. 33 2443
[25] Shan M, Liu L, Liu B and Zhong Z 2021 Opt. Lasers Eng. 145 106662
[26] Zhang Y L, Lu Y X, Wang H X, Chen P and Liang R H 2021 Optics & Laser Technology 139 106979
[27] Muniraj I, Guo C, Malallah R, Ryle J P, Healy J J, Lee B G and Sheridan J T 2017 Opt. Lett. 42 2774
[28] Lai Q, Wan Z Q, Keng N, Leandre K, Kamdem K, Paul D and Chen C Y 2021 IEEE Trans. Neural Netw Learn Syst. 68 1549
[29] Lai Q, Wan Z Q and Paul D 2023 IEEE T. Circuits-I 70 1324
[30] Lai Q, Hu G W, Erkan U and Toktas A 2023 Expert Syst. Appl. 213 118845
[31] Lai Q, Liang Y and Liu Y 2022 Chaos Solitons Fractals 165 112781
[32] Clemente P, Durán V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391
[33] Chen W and Chen X 2013 Appl. Phys. Lett. 103 221106
[34] Qin Y and Zhang Y Y 2017 IEEE Photon. J. 9 7802208
[35] Zhang L H, Pan Z L and Zhou G L 2017 J. Opt. 84 471
[36] Zheng P, Ye Z, Xiong J and Liu H 2022 Opt. Express 30 21866
[37] Zhang Z, Jiao S, Yao M, Li X and Zhong J 2018 Opt. Express 26 14578
[38] Sun S L 2018 IEEE Photon. J. 10 1
[39] Yi K, Leihong Z, Hualong Y, Mantong Z, Kanwal S and Dawei Z 2020 Opt. Lasers Eng. 134 106154
[40] Qu G, Meng X, Yin Y, Wu H, Yang X, Peng X and He W 2020 Opt. Lasers Eng. 137 106392
[41] Liu Y, Zheng P and Liu H C 2022 Opt. Express 30 14073
[42] Jiao S, Feng J, Gao Y, Lei T and Yuan X 2020 Opt. Express 28 7301
[43] Yuan S, Magayane D A, Liu X, Zhou X, Lu G, Wang Z, Zhang H and Li Z 2020 Opt. Commun. 482 126568
[44] Liu H C and Chen W 2020 Opt. Lasers Eng. 130 106094
[45] Ghanbari-Ghalehjoughi H, Eslami M, Ahmadi-Kandjani S, Ghanbari-Ghalehjoughi M and Yu Z 2020 Opt. Lasers Eng. 134 106227
[46] Lin S, Wang X, Zhu A, Xue J and Xu B 2022 Opt. Express 30 36144
[47] Zheng P X, Dai Q, Li Z L, Ye Z Y, Xiong J, Liu H C, Zheng G X and Zhang S 2021 Sci. Adv. 7 1
[48] Arnol'd V I and Avez A 1968 Ergodic Problems of Classical Mechanics (New York: Benjamin)
[49] Chen G, Mao Y and Chui C K 2004 Chaos Solitons Fractals 21 749
[50] Liu H, Zhu Z, Jiang H and Wang B 2008 International Workshop on Chaos-Fractals Theories and Applications & the 9th International Conference for Young Computer Scientists, November, 2008 Hunan, China
[51] Koblitz N 2010 Math. Comput. 48 203
[52] Diffie W and Hellman M 2004 IEEE Trans. Inf. Theory 22 644
[53] Zhang Z, Wang X, Zheng G and Zhong J 2017 Opt. Express 25 19619
[54] Zhou W, Alan B, Hamid R S and Eero P S 2004 IEEE Trans. Image Process. 13 600
[1] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[2] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[3] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[4] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[5] Complex-amplitude Fourier single-pixel imaging via coherent structured illumination
Hong-Yun Hou(侯红云), Ya-Nan Zhao(赵亚楠), Jia-Cheng Han(韩佳成), De-Zhong Cao(曹 德忠),Su-Heng Zhang(张素恒), Hong-Chao Liu(刘宏超), and Bao-Lai Liang(梁宝来). Chin. Phys. B, 2023, 32(6): 064201.
[6] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[7] Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[8] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[9] Resolution-enhanced single-pixel imaging using the Hadamard transform matrix
Shu-Hang Bie(别书航), Chen-Hui Wang(王晨晖), Rui-Bing Lv(吕瑞兵), Qian-Qian Bao(鲍倩倩),Qiang Fu(付强), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(12): 128702.
[10] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[11] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[12] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[13] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[14] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[15] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
No Suggested Reading articles found!