ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation |
Zhen-Yu Liang(梁振宇)1,2, Chao-Jin Wang(王朝瑾)1, Yang-Yang Wang(王阳阳)1, Hao-Qi Gao(高皓琪)1, Dong-Tao Zhu(朱东涛)1, Hao-Li Xu(许颢砾)1, and Xing Yang(杨星)1,2,† |
1 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230001, China; 2 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230001, China |
|
|
Abstract Single-pixel imaging (SPI) can transform 2D or 3D image data into 1D light signals, which offers promising prospects for image compression and transmission. However, during data communication these light signals in public channels will easily draw the attention of eavesdroppers. Here, we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission. This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection. Then the transformation parameters serve as the secret key, while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism. Compared with existing encryption schemes, both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules. Additionally, this approach solves the problem of secure key transmission, thus ensuring the security of information and the quality of the decrypted images.
|
Received: 04 June 2023
Revised: 16 August 2023
Accepted manuscript online: 21 August 2023
|
PACS:
|
42.30.-d
|
(Imaging and optical processing)
|
|
42.68.Sq
|
(Image transmission and formation)
|
|
07.05.Pj
|
(Image processing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075241). |
Corresponding Authors:
Xing Yang
E-mail: yangxing17@nudt.edu.cn
|
Cite this article:
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星) Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation 2024 Chin. Phys. B 33 034204
|
[1] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Process Mag. 25 83 [2] Ma J W 2009 IEEE Geosci. Remote. Sens. Lett. 6 676 [3] Erkmen B I 2012 J. Opt. Soc. Am. A 29 782 [4] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photonics 13 13 [5] Sun M J and Zhang J M 2019 Sensors 19 732 [6] Chen Y, Yin K, Shi D, Yang W, Huang J, Guo Zi, Yuan K and Wang Y 2022 Appl. Opt. 61 6905 [7] Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S and Situ G 2022 Light Sci. Appl. 11 27 [8] Zhao C, Gong W, Chen M, Li E, Wang H, Xu W and Han S 2012 Appl. Phys. Lett. 101 141123 [9] Chu C, Liu S, Liu Z, Hu C, Zhao Y and Han S 2021 Appl. Opt 60 4632 [10] Li W, Tong Z, Xiao K, Liu Z, Gao Q, Sun J, Liu S, Han S and Wang Z 2019 Optica 6 1515 [11] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901 [12] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374 [13] Lin J, Yan Q, Lu S, Zheng Y, Sun S and Wei Z 2022 Photonics 9 343 [14] Zhou N R, Zhang A D, Zheng F and Gong L H 2014 Optics and Laser Technology 62 152 [15] Zhang Z B, Ma X and Zhong J G 2015 Nat. Commun. 6 6225 [16] Huynh N, Zhang E, Betcke M, Arridge S, Beard P and Cox B 2016 Optica 3 26 [17] Lyu M, Wang W, Wang H, Wang H, Li G, Chen N and Situ G 2017 Sci. Rep. 7 17865 [18] Higham C F, Murray-Smith R, Padgett M J and Edgar M P 2018 Sci. Rep. 8 2369 [19] Wang F, Wang H, Wang H, Li G and Situ G 2019 Opt. Express 27 25560 [20] Wang F, Wang C, Deng C, Han S and Situ G 2022 Photonics Res. 10 104 [21] Wang F, Wang C, Chen C, Gong W, Zhang Y, Han S and Situ G 2022 Light: Sci. Appl. 11 1 [22] Situ G and Zhang J 2004 Opt. Lett. 29 1584 [23] Liao M, Zheng S, Pan S, Lu D, He W, Situ G and Peng X 2021 Opto-Electronic Advances 4 200016 [24] Zhang Y and Wang B 2008 Opt. Lett. 33 2443 [25] Shan M, Liu L, Liu B and Zhong Z 2021 Opt. Lasers Eng. 145 106662 [26] Zhang Y L, Lu Y X, Wang H X, Chen P and Liang R H 2021 Optics & Laser Technology 139 106979 [27] Muniraj I, Guo C, Malallah R, Ryle J P, Healy J J, Lee B G and Sheridan J T 2017 Opt. Lett. 42 2774 [28] Lai Q, Wan Z Q, Keng N, Leandre K, Kamdem K, Paul D and Chen C Y 2021 IEEE Trans. Neural Netw Learn Syst. 68 1549 [29] Lai Q, Wan Z Q and Paul D 2023 IEEE T. Circuits-I 70 1324 [30] Lai Q, Hu G W, Erkan U and Toktas A 2023 Expert Syst. Appl. 213 118845 [31] Lai Q, Liang Y and Liu Y 2022 Chaos Solitons Fractals 165 112781 [32] Clemente P, Durán V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391 [33] Chen W and Chen X 2013 Appl. Phys. Lett. 103 221106 [34] Qin Y and Zhang Y Y 2017 IEEE Photon. J. 9 7802208 [35] Zhang L H, Pan Z L and Zhou G L 2017 J. Opt. 84 471 [36] Zheng P, Ye Z, Xiong J and Liu H 2022 Opt. Express 30 21866 [37] Zhang Z, Jiao S, Yao M, Li X and Zhong J 2018 Opt. Express 26 14578 [38] Sun S L 2018 IEEE Photon. J. 10 1 [39] Yi K, Leihong Z, Hualong Y, Mantong Z, Kanwal S and Dawei Z 2020 Opt. Lasers Eng. 134 106154 [40] Qu G, Meng X, Yin Y, Wu H, Yang X, Peng X and He W 2020 Opt. Lasers Eng. 137 106392 [41] Liu Y, Zheng P and Liu H C 2022 Opt. Express 30 14073 [42] Jiao S, Feng J, Gao Y, Lei T and Yuan X 2020 Opt. Express 28 7301 [43] Yuan S, Magayane D A, Liu X, Zhou X, Lu G, Wang Z, Zhang H and Li Z 2020 Opt. Commun. 482 126568 [44] Liu H C and Chen W 2020 Opt. Lasers Eng. 130 106094 [45] Ghanbari-Ghalehjoughi H, Eslami M, Ahmadi-Kandjani S, Ghanbari-Ghalehjoughi M and Yu Z 2020 Opt. Lasers Eng. 134 106227 [46] Lin S, Wang X, Zhu A, Xue J and Xu B 2022 Opt. Express 30 36144 [47] Zheng P X, Dai Q, Li Z L, Ye Z Y, Xiong J, Liu H C, Zheng G X and Zhang S 2021 Sci. Adv. 7 1 [48] Arnol'd V I and Avez A 1968 Ergodic Problems of Classical Mechanics (New York: Benjamin) [49] Chen G, Mao Y and Chui C K 2004 Chaos Solitons Fractals 21 749 [50] Liu H, Zhu Z, Jiang H and Wang B 2008 International Workshop on Chaos-Fractals Theories and Applications & the 9th International Conference for Young Computer Scientists, November, 2008 Hunan, China [51] Koblitz N 2010 Math. Comput. 48 203 [52] Diffie W and Hellman M 2004 IEEE Trans. Inf. Theory 22 644 [53] Zhang Z, Wang X, Zheng G and Zhong J 2017 Opt. Express 25 19619 [54] Zhou W, Alan B, Hamid R S and Eero P S 2004 IEEE Trans. Image Process. 13 600 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|