Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014209    DOI: 10.1088/1674-1056/abb665
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology

Yuan Yuan(袁园)1, Min-Yuan Sun(孙敏远)1, Yong Bi(毕勇)1,†, Wei-Nan Gao(高伟男)1, Shuo Zhang(张硕)1,2, and Wen-Ping Zhang(张文平)1
1 Center of Applied Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China ; 2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix (TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis (DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He-Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio (SNR) of the clear round focus is ∼ 50 and the size is about 44 μ m. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.
Keywords:  optical transmission matrix      direct digital frequency synthesis technology      phase modulation      wavefront optimization  
Received:  17 July 2020      Revised:  10 August 2020      Accepted manuscript online:  09 September 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Hz (Interference)  
  42.30.Kq (Fourier optics)  
  42.30.Ms (Speckle and moiré patterns)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0401902 and 2016YFB0402001) and Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B010926001).
Corresponding Authors:  Corresponding author. E-mail: biyong@mail.ipc.ac.cn   

Cite this article: 

Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平) Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology 2021 Chin. Phys. B 30 014209

1 Sheng P Introduction to Wave Scattering, Localisation, and Mesoscopic Phenomena(New York: Academic Press) p. 49
2 Beenakker C W J 1997 Rev. Mod. Phys. 69 731
3 Kang S, Jeong S, Choi W, Ko H, Yang T D, Joo J H, Lee J S, Lim Y S, Park Q H and Choi W 2015 Nat. Photon. 9 253
4 Sebbah P, Hu B, Genack A Z, Pnini R and Shapiro B 2002 Phys. Rev. Lett. 88 123901
5 Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601
6 Popoff S, Lerosey G, Fink M, Boccara A C and Gigan S 2010 Nat. Commun. 1 81
7 Kim M, Choi Y, Yoon C, Choi W, Kim J, Park Q H and Choi W 2012 Nat. Photonics 6 581
8 Park C, Park J H, Rodriguez C, Yu H, Kim M, Jin K, Han S, Shin J, Ko S H, Nam K T, Lee Y H, Cho Y H and Park Y 2014 Phys. Rev. Lett. 113 113901
9 Chaigne T, Katz O, Boccara A C, Fink M, Bossy E and Gigan S 2013 Nat. Photonics 8 58
10 Popoff S, Lerosey G, Fink M, Boccara A C and Gigan S 2011 New J. Phys. 13 123021
11 Yu H, Hillman T R, Choi W, Lee J O, Feld M S, Dasari R R and Park Y 2013 Phys. Rev. Lett. 111 153902
12 Tripathi S, Paxman R, Bifano T and Toussaint K C 2012 Opt. Express 20 16067
13 Cui M 2011 Opt. Lett. 36 870
14 Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309
15 Yoon J, Lee K, Park J and Park Y 2015 Opt. Express 23 10158
16 Janet C A P, Rajesh K B, Udhayakumar M, Jaroszewicz Z and Pillai T V S 2016 Chin. Phys. Lett. 33 124206
17 Prabakaran K, Rajesh K B, Sumathira S, Bharathi M D, Hemamalini R, Musthafa A M and Aroulmoji V 2016 Chin. Phys. Lett. 33 94203
18 Li X M, Li J J, Gao Q and Gao P C 2020 Chin. Phys. Lett. 29 024202
19 Bender N, Yílmaz H, Bromberg Y and Cao H 2019 APL Photonics 4 110806
20 Bender N, Yílmaz H, Bromberg Y and Cao H 2019 Opt. Express 27 6057
21 Bender N, Yílmaz H, Bromberg Y and Cao H 2018 Optica 5 595
22 Dubois A, Vabre L, Boccara A and Beaurepaire E 2002 Appl. Opt. 41 805
23 Shen Y, Liu Y, Ma C and Wang L V 2016 Journal of Biomedical Optics 21 85001
24 Machacek Z, Gabzdyl M and Michna V IFAC Proceedings 43 189-194
25 Yuan Y, Bi Y, Sun M Y, Wang D Z, Wang D D, Gao W N and Zhang S 2020 Opt. Commun. 454 124405
26 Yuan Y, Bi Y, Sun M Y, Wang D Z, Wang D D, Gao W N and Zhang S 2020 Opt. Commun. 463 125368
[1] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[2] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[5] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[6] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[7] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[8] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[9] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[10] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[11] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[12] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[13] Electromagnetically induced grating in a thermal N-type four-level atomic system
Ya-Bin Dong(董雅宾), Jun-Yan Li(李俊燕), Zhi-Ying Zhou(周志英). Chin. Phys. B, 2017, 26(1): 014202.
[14] Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals
Liangyu Shi, Abhishek Kumar Srivastava, Vladimir G Chigrinov, Hoi-Sing Kwok. Chin. Phys. B, 2016, 25(9): 094212.
[15] Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber
Zhi-Yuan Huang(黄志远), Ye Dai(戴晔), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2016, 25(7): 074205.
No Suggested Reading articles found!