ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides |
Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟)†, Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝) |
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China |
|
|
Abstract A phoxonic crystal waveguide with the glide symmetry is designed, in which both electromagnetic and elastic waves can propagate along the glide plane at the same time. Due to the glide symmetry, the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone. This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes. By adjusting the magnitude of the glide dislocation the edge bandgaps, the bandgap of the guided-modes at the boundary of the Brillouin zone, can be further adjusted. The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities, achieving single-mode guided-bands with relatively flat dispersion relationship. In addition, there exists acousto-optic interaction in the cavity constructed by the glide plane. The proposed waveguide has potential applications in the design of novel optomechanical devices.
|
Received: 25 September 2023
Revised: 20 November 2023
Accepted manuscript online: 22 November 2023
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.79.Jq
|
(Acousto-optical devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12064025), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212ACB202006), the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No. 20204BCJ22012), and the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China. |
Corresponding Authors:
Ling-Juan He
E-mail: helingjuan_123@163.com
|
Cite this article:
Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝) Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides 2024 Chin. Phys. B 33 034202
|
[1] Maldovan M and Thomas E 2006 Appl. Phys. B 83 595 [2] Maldovan M and Thomas E L 2006 Appl. Phys. Lett. 88 251907 [3] Eichenfield M, Camacho R, Chan J, Vahala K J and Painter O 2009 Nature 459 550 [4] Favero I and Karrai K 2009 Nat. Photon. 3 201 [5] Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G and Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109 [6] Lucklum R, Zubtsov M and Oseev A 2013 Analytical and Bioanalytical Chemistry 405 6497 [7] Rolland Q, Dupont S, Gazalet J, Kastelik J C, Pennec Y, Djafari-Rouhani B and Laude V 2014 Opt. Express 22 16288 [8] Escalante J M, Martínez A and Laude V 2014 J. Appl. Phys. 115 064302 [9] Pennec Y, Rouhani B D, Boudouti E H E, Li C, Hassouani Y E, Vasseur J O, Papanikolaou N, Benchabane S, Laude V and Martinez A 2010 Opt. Express 18 14301 [10] Mohammadi S, Eftekhar A A, Khelif A and Adibi A 2010 Opt. Express 18 9164 [11] Kipfstuhl L, Guldner F, Riedrich-Möller J and Becher C 2014 Opt. Express 22 12410 [12] Ma T X, Wang Y S and Zhang C 2017 Crystals 7 350 [13] Moradi P and Bahrami A 2018 J. Appl. Phys. 123 115113 [14] Qiu L, Shomroni I, Seidler P and Kippenberg T J 2020 Phys. Rev. Lett. 124 173601 [15] Jin J, Wang X, Zhan L and Hu H 2021 Nanotechnol. Rev. 10 443 [16] Aram M H and Khorasani S 2018 J. Opt. Soc. Am. B 35 1390 [17] Xia B, Fan H and Liu T 2019 Int. J. Mech. Sci. 155 197 [18] Aboutalebi S Z and Bahrami A 2021 Phys. Scr. 96 075704 [19] Ma T X, Liu J, Zhang C and Wang Y S 2022 Phys. Rev. A 106 043504 [20] Lei L L, He L J, Liu W X, Liao Q H and Yu T B 2022 Appl. Phys. Lett. 121 193103 [21] Lin T R, Lin C H and Hsu J C 2013 J. Appl. Phys. 113 053508 [22] Chiu C C, Chen W M, Sung K W and Hsiao F L 2017 Opt. Express 25 6076 [23] Ma T X, Wang Y S, Zhang C and Su X X 2014 J. Opt. 16 085002 [24] Laude V, Beugnot J C, Benchabane S, Pennec Y, Djafari-Rouhani B, Papanikolaou N, Escalante J M and Martinez A 2011 Opt. Express 19 9690 [25] Shu Y, Yu M, Yu T, Liu W, Wang T and Liao Q 2020 Opt. Express 28 24813 [26] Martínez J A I, Laforge N, Kadic M and Laude V 2022 Phys. Rev. B 106 064304 [27] Tuevedo-Teruel O, Chen Q, Mesa F, Fonseca N J G and Valerio G 2021 IEEE J. Microwaves 1 457 [28] Dahlberg O, Mitchell-Thomas R C and Quevedo-Teruel O 2017 Sci. Rep. 7 [29] Beadle J G, Hooper I R, Sambles J R and Hibbins A P 2019 J. Acoust. Soc. Am. 145 3190 [30] Janković N and Alú A 2021 Phys. Rev. Appl. 15 024004 [31] Abdollahy H, Farahbakhsh A and Ostovarzadeh M H 2021 AEU - International Journal of Electronics and Communications 132 153655 [32] Mahmoodian S, Prindal-Nielsen K, Söllner I, Stobbe S and Lodahl P 2016 Opt. Mater. Express 7 43 [33] Yoshimi H, Yamaguchi T, Ota Y, Arakawa Y and Iwamoto S 2020 Opt. Lett. 45 2648 [34] Yoshimi H, Yamaguchi T, Katsumi R, Ota Y, Arakawa Y and Iwamoto S 2021 Opt. Express 29 13441 [35] Xie X, Yan S, Dang J, Yang J, Xiao S, Wang Y, Shi S, Yang L, Dai D, Yuan Y, Luo N, Cui T, Chi G, Zuo Z, Li B B, Wang C and Xu X 2021 Phys. Rev. Appl. 16 014036 [36] Wen E, Bisharat D J, Davis R J, Yang X and Sievenpiper D F 2022 Phys. Rev. Appl. 17 064008 [37] Mock A, Lu L and O'Brien J 2010 Phys. Rev. B 81 155115 [38] Kim H and Murakami S 2020 Phys. Rev. B 102 195202 [39] Ghasemifard F, Norgren M and Quevedo-Teruel O 2018 Sci. Rep. 8 11266 [40] Zhang S L and Zhou Q 2017 Phys. Rev. A 95 061601 [41] Nica E M, Yu R and Si Q 2015 Phys. Rev. B 92 174520 [42] Lei L, Yu T, Liu W, Wang T and Liao Q 2021 Opt. Express 30 308 [43] Shu Y, Yu M, Yu T, Liu W, Wang T and Liao Q 2020 Opt. Express 28 24813 [44] Lei L, Xiao S, Liu W, Liao Q, He L and Yu T 2023 Phys. Rev. Appl. 20 024014 [45] Yu Z and Sun X 2018 Opt. Express 26 1255 [46] Lin Z K, Wang H X, Xiong Z, Lu M H and Jiang J H 2020 Phys. Rev. B 102 035105 [47] El-jallal S, Oudich M, Pennec Y, Djafari-Rouhani B, Makhoute A, Rolland Q, Dupont S and Gazalet J 2013 J. Phys.: Condens. Matter 26 015005 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|