Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034202    DOI: 10.1088/1674-1056/ad0ec7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides

Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝)
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
Abstract  A phoxonic crystal waveguide with the glide symmetry is designed, in which both electromagnetic and elastic waves can propagate along the glide plane at the same time. Due to the glide symmetry, the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone. This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes. By adjusting the magnitude of the glide dislocation the edge bandgaps, the bandgap of the guided-modes at the boundary of the Brillouin zone, can be further adjusted. The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities, achieving single-mode guided-bands with relatively flat dispersion relationship. In addition, there exists acousto-optic interaction in the cavity constructed by the glide plane. The proposed waveguide has potential applications in the design of novel optomechanical devices.
Keywords:  phoxonic crystals      glide symmetry      waveguide      acousto-optic interaction  
Received:  25 September 2023      Revised:  20 November 2023      Accepted manuscript online:  22 November 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.70.Qs (Photonic bandgap materials)  
  42.79.Jq (Acousto-optical devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12064025), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212ACB202006), the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No. 20204BCJ22012), and the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
Corresponding Authors:  Ling-Juan He     E-mail:  helingjuan_123@163.com

Cite this article: 

Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝) Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides 2024 Chin. Phys. B 33 034202

[1] Maldovan M and Thomas E 2006 Appl. Phys. B 83 595
[2] Maldovan M and Thomas E L 2006 Appl. Phys. Lett. 88 251907
[3] Eichenfield M, Camacho R, Chan J, Vahala K J and Painter O 2009 Nature 459 550
[4] Favero I and Karrai K 2009 Nat. Photon. 3 201
[5] Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G and Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109
[6] Lucklum R, Zubtsov M and Oseev A 2013 Analytical and Bioanalytical Chemistry 405 6497
[7] Rolland Q, Dupont S, Gazalet J, Kastelik J C, Pennec Y, Djafari-Rouhani B and Laude V 2014 Opt. Express 22 16288
[8] Escalante J M, Martínez A and Laude V 2014 J. Appl. Phys. 115 064302
[9] Pennec Y, Rouhani B D, Boudouti E H E, Li C, Hassouani Y E, Vasseur J O, Papanikolaou N, Benchabane S, Laude V and Martinez A 2010 Opt. Express 18 14301
[10] Mohammadi S, Eftekhar A A, Khelif A and Adibi A 2010 Opt. Express 18 9164
[11] Kipfstuhl L, Guldner F, Riedrich-Möller J and Becher C 2014 Opt. Express 22 12410
[12] Ma T X, Wang Y S and Zhang C 2017 Crystals 7 350
[13] Moradi P and Bahrami A 2018 J. Appl. Phys. 123 115113
[14] Qiu L, Shomroni I, Seidler P and Kippenberg T J 2020 Phys. Rev. Lett. 124 173601
[15] Jin J, Wang X, Zhan L and Hu H 2021 Nanotechnol. Rev. 10 443
[16] Aram M H and Khorasani S 2018 J. Opt. Soc. Am. B 35 1390
[17] Xia B, Fan H and Liu T 2019 Int. J. Mech. Sci. 155 197
[18] Aboutalebi S Z and Bahrami A 2021 Phys. Scr. 96 075704
[19] Ma T X, Liu J, Zhang C and Wang Y S 2022 Phys. Rev. A 106 043504
[20] Lei L L, He L J, Liu W X, Liao Q H and Yu T B 2022 Appl. Phys. Lett. 121 193103
[21] Lin T R, Lin C H and Hsu J C 2013 J. Appl. Phys. 113 053508
[22] Chiu C C, Chen W M, Sung K W and Hsiao F L 2017 Opt. Express 25 6076
[23] Ma T X, Wang Y S, Zhang C and Su X X 2014 J. Opt. 16 085002
[24] Laude V, Beugnot J C, Benchabane S, Pennec Y, Djafari-Rouhani B, Papanikolaou N, Escalante J M and Martinez A 2011 Opt. Express 19 9690
[25] Shu Y, Yu M, Yu T, Liu W, Wang T and Liao Q 2020 Opt. Express 28 24813
[26] Martínez J A I, Laforge N, Kadic M and Laude V 2022 Phys. Rev. B 106 064304
[27] Tuevedo-Teruel O, Chen Q, Mesa F, Fonseca N J G and Valerio G 2021 IEEE J. Microwaves 1 457
[28] Dahlberg O, Mitchell-Thomas R C and Quevedo-Teruel O 2017 Sci. Rep. 7
[29] Beadle J G, Hooper I R, Sambles J R and Hibbins A P 2019 J. Acoust. Soc. Am. 145 3190
[30] Janković N and Alú A 2021 Phys. Rev. Appl. 15 024004
[31] Abdollahy H, Farahbakhsh A and Ostovarzadeh M H 2021 AEU - International Journal of Electronics and Communications 132 153655
[32] Mahmoodian S, Prindal-Nielsen K, Söllner I, Stobbe S and Lodahl P 2016 Opt. Mater. Express 7 43
[33] Yoshimi H, Yamaguchi T, Ota Y, Arakawa Y and Iwamoto S 2020 Opt. Lett. 45 2648
[34] Yoshimi H, Yamaguchi T, Katsumi R, Ota Y, Arakawa Y and Iwamoto S 2021 Opt. Express 29 13441
[35] Xie X, Yan S, Dang J, Yang J, Xiao S, Wang Y, Shi S, Yang L, Dai D, Yuan Y, Luo N, Cui T, Chi G, Zuo Z, Li B B, Wang C and Xu X 2021 Phys. Rev. Appl. 16 014036
[36] Wen E, Bisharat D J, Davis R J, Yang X and Sievenpiper D F 2022 Phys. Rev. Appl. 17 064008
[37] Mock A, Lu L and O'Brien J 2010 Phys. Rev. B 81 155115
[38] Kim H and Murakami S 2020 Phys. Rev. B 102 195202
[39] Ghasemifard F, Norgren M and Quevedo-Teruel O 2018 Sci. Rep. 8 11266
[40] Zhang S L and Zhou Q 2017 Phys. Rev. A 95 061601
[41] Nica E M, Yu R and Si Q 2015 Phys. Rev. B 92 174520
[42] Lei L, Yu T, Liu W, Wang T and Liao Q 2021 Opt. Express 30 308
[43] Shu Y, Yu M, Yu T, Liu W, Wang T and Liao Q 2020 Opt. Express 28 24813
[44] Lei L, Xiao S, Liu W, Liao Q, He L and Yu T 2023 Phys. Rev. Appl. 20 024014
[45] Yu Z and Sun X 2018 Opt. Express 26 1255
[46] Lin Z K, Wang H X, Xiong Z, Lu M H and Jiang J H 2020 Phys. Rev. B 102 035105
[47] El-jallal S, Oudich M, Pennec Y, Djafari-Rouhani B, Makhoute A, Rolland Q, Dupont S and Gazalet J 2013 J. Phys.: Condens. Matter 26 015005
[1] Singular optical propagation properties of two types of one-dimensional anti-PT-symmetric periodic ring optical waveguide networks
Yanglong Fan(樊阳龙), Xiangbo Yang(杨湘波), Huada Lian(练华达), Runkai Chen(陈润楷),Pengbo Zhu(朱蓬勃), Dongmei Deng(邓冬梅), Hongzhan Liu(刘宏展), and Zhongchao Wei(韦中超). Chin. Phys. B, 2024, 33(3): 034201.
[2] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[3] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[4] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[5] Compact TE-pass polarizer based on lithium-niobate-on-insulator assisted by indium tin oxide and silicon nitride
Jia-Min Liu(刘家敏) and De-Long Zhang(张德龙). Chin. Phys. B, 2023, 32(6): 064208.
[6] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[7] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Dynamic modulated single-photon routing
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Miao Hu(胡淼), Mengmeng Xu(许蒙蒙), Xue-Fang Zhou(周雪芳), Xiuwen Xia(夏秀文), Jing-Ping Xu(许静平), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 124203.
[10] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[11] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[12] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[15] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
No Suggested Reading articles found!