CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Determining Hubbard U of VO2 by the quasi-harmonic approximation |
Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃)† |
School of Physics, Nankai University, Tianjin 300071, China |
|
|
Abstract Vanadium dioxide VO2 is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K. In order to describe the electron correlation effects in VO2, the DFT + U method is commonly employed in calculations. However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO2, the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation (QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew—Burke—Ernzerhof functional combined with the U parameter of 1.5 eV. Additionally, the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO2. The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO2.
|
Received: 18 July 2023
Revised: 22 September 2023
Accepted manuscript online: 26 September 2023
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 21933006 and 21773124) and the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos. 010-63233001, 63221346, 63213042, and ZB22000103). K.L. acknowledges the support from the China Postdoctoral Science Foundation (Grant No. 2021M691674) and the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020105). |
Corresponding Authors:
Zhenpeng Hu
E-mail: zphu@nankai.edu.cn
|
Cite this article:
Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃) Determining Hubbard U of VO2 by the quasi-harmonic approximation 2024 Chin. Phys. B 33 016302
|
[1] Dagotto E 2005 Science 309 257 [2] Wu J, Lynn J W, Glinka C J, Burley J, Zheng H, Mitchell J F and Leighton C 2005 Phys. Rev. Lett. 94 037201 [3] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [5] Stewart G R 2011 Rev. Mod. Phys. 83 1589 [6] Kim S Y, Lee M C, Han G, Kratochvilova M, Yun S, Moon S J, Sohn C, Park J G, Kim C Y and Noh T W 2018 Adv. Mater. 30 1704777 [7] Hu P, Hu P, Vu T D, Li M, Wang S, Ke Y, Zeng L, Mai L and Long Y 2023 Chem. Rev. 123 4353 [8] Li Y, Zhu Y, Wang M, Zhao M, Xue J, Chen J, Wu T and Chambers S A 2022 Adv. Funct. Mater. 32 2203491 [9] Wang L, Li H, Zhang W, Zhao X, Qiu J, Li A, Zheng X, Hu Z, Si R and Zeng J 2017 Angew. Chem. Int. Ed. 56 4712 [10] Xu X, Xiong F, Meng J, Wang X, Niu C, An Q and Mai L 2020 Adv. Funct. Mater. 30 1904398 [11] Mounasamy V, Mani G K and Madanagurusamy S 2020 Mikrochim. Acta 187 1 [12] Morin F J 1959 Phys. Rev. Lett. 3 34 [13] Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kiefferand J C and Schoenlein R W 2005 Phys. Rev. Lett. 95 67405 [14] Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K and Kachi S 1990 Phys. Rev. B 41 4993 [15] Berglund C N and Guggenheim H J 1969 Phys. Rev. 185 1022 [16] Savo S, Zhou Y, Castaldi G, Moccia M, Galdi V, Ramanathan S and Sato Y 2015 Phys. Rev. B 91 134105 [17] Kasrga T S, Sun D, Park J H, Coy J M, Fei Z, Xu X and Cobden D H 2012 Nat. Nanotechnol. 7 723 [18] Kats M A, Blanchard R, Zhang S. Genevet P, Ko C, Ramanathan S and Capasso F 2013 Phys. Rev. X 3 041004 [19] Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S and Xie Y 2011 J. Mater. Chem. A 21 4509 [20] Kang L, Gao Y and Luo H 2009 ACS Appl. Mater. Interfaces 1 2211 [21] Gao Y, Luo H, Zhang Z, Kang L, Chen Z, Du J, Kanehira M and Cao C 2012 Nano Energy 1 221 [22] Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y and Long Y 2019 J. Mater. Chem. C 7 2121 [23] Li M, Magdassi S, Gao Y and Long Y 2017 Small 13 1701147 [24] Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y and Gao Y 2023 Chem. Rev. 123 7025 [25] Manning T D, Parkin I P, Pemble M E, Sheel D and Vernardou D 2004 Chem. Mater. 16 744 [26] Soltani M, Chaker M, Haddad E and Kruzelesky R 2006 Meas. Sci. Technol. 17 1052 [27] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund J R F and Maier S A 2015 ACS Photon. 2 1306 [28] Haddad E, Kruzelecky R V, Murzionak P, Jamroz W, Tagziria K, Chaker M and Ledrogoff B 2022 Front. Mater. 9 1013848 [29] Xu C, Jin C, Chen Z, Lu Q, Cheng Y, Zhang B, Qi F, Chen J, Yin X, Wang G, Xiang D and Qian D 2023 Nat. Commun. 14 1265 [30] Li J, Wu L, Yang S, Jin X, Wang W, Tao J, Boatner L, Babzien M, Fedurin M, Palmer M and Zhu Y 2022 Phys. Rev. X 12 021032 [31] Hattori A N, Osaka A I, Hattori K, Naitoh Y, Shima H, Akinaga H and Tanaka H 2020 Crystals 10 631 [32] Ke Y, Wang S, Liu G, Li M, White T J and Long Y 2018 Small 14 1802025 [33] Wentzcovitch R M, Schulz W W and Allen P B 1994 Phys. Rev. Lett. 72 3389 [34] Eyert V 2002 Ann. Phys. 514 650 [35] Zhu Z and Schwingenschlogl U 2012 Phys. Rev. B 86 075149 [36] Eyert V. 2011 Phys. Rev. Lett. 107 016401 [37] Gatti M, Bruneval F, Olevano V and Reining L 2007 Phys. Rev. Lett. 99 266402 [38] Tomczak J M and Biermann S 2007 J. Phys.:Condens. Matter 19 365206 [39] Grau-Crespo R, Wang H and Schwingenschlogl 2012 Phys. Rev. B 86 081101 [40] Sommers C and Doniach S 1978 Solid State Commun. 28 133 [41] Abdellaoui I, Remli F, Mahmoudi A and Dergal M 2022 Solid State Commun. 347 114710 [42] Mohebbi E, Pavoni E, Mencarelli D, Stipa P, Pierantoni L and Laudadio E 2022 Nanoscale Adv. 4 3634 [43] Kim S, Kim K, Kang C J and Min B I 2013 Phys. Rev. B 87 195106 [44] Kinaci A, Kado M, Rosenmann D, Ling C, Zhu G, Banerjee D and Chan M K 2015 Appl. Phys. Lett. 107 262108 [45] Stahl B and Bredow T 2020 J. Comput. Chem. 41 258 [46] Cococcioni M and De Gironcoli S 2005 Phys. Rev. B 71 035105 [47] Sasoglu E, Friedrich C and Blugel S 2011 Phys. Rev. B 83 121101 [48] Wang Y C and Jiang H 2019 J. Chem. Phys. 150 154116 [49] Sakuma R, Miyake T and Aryasetiawan F 2008 Phys. Rev. B 78 075106 [50] Liu G H, Deng X Y and Wen R 2010 J. Mater. Sci. 45 3270 [51] Budai J D, Hong J, Manley, M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J and Delaire O 2014 Nature 515 535 [52] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [54] Blochl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223 [55] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [56] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [57] Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301 [58] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [59] Baroni S, Giannozzi P and Isaev E 2011 arXiv:1112.4977[cond-mat.mtrl-sci] [60] Longo J M, Kierkegaard P, Ballhausen C J, Ragnarsson U, Rasmussen S E, Sunde E and Sorensen N A 1970 Acta Chem. Scand. 24 420 [61] McWhan D B, Marezio M, Remeika J P and Dernier P D 1974 Phys. Rev. B 10 490 [62] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Damnes C, Hartnoll S A, Delaire O and Wu J 2017 Science 355 371 [63] Hua Z W, Zheng T, Sang J X, Xu X F, Wu B H and Wei L F 2021 J. Phys. D 54 355302 [64] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.:Condens. Matter 1 1941 [65] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383 [66] Chandrashekhar G V, Barros H L C and Honig J M 1973 Mater. Res. Bull. 8 369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|