Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016302    DOI: 10.1088/1674-1056/acfd18
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Determining Hubbard U of VO2 by the quasi-harmonic approximation

Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃)
School of Physics, Nankai University, Tianjin 300071, China
Abstract  Vanadium dioxide VO2 is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K. In order to describe the electron correlation effects in VO2, the DFT + U method is commonly employed in calculations. However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO2, the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation (QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew—Burke—Ernzerhof functional combined with the U parameter of 1.5 eV. Additionally, the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO2. The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO2.
Keywords:  quasi-harmonic approximation      vanadium dioxide      first-principles calculation      Hubbard U  
Received:  18 July 2023      Revised:  22 September 2023      Accepted manuscript online:  26 September 2023
PACS:  63.20.dk (First-principles theory)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 21933006 and 21773124) and the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos. 010-63233001, 63221346, 63213042, and ZB22000103). K.L. acknowledges the support from the China Postdoctoral Science Foundation (Grant No. 2021M691674) and the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020105).
Corresponding Authors:  Zhenpeng Hu     E-mail:  zphu@nankai.edu.cn

Cite this article: 

Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃) Determining Hubbard U of VO2 by the quasi-harmonic approximation 2024 Chin. Phys. B 33 016302

[1] Dagotto E 2005 Science 309 257
[2] Wu J, Lynn J W, Glinka C J, Burley J, Zheng H, Mitchell J F and Leighton C 2005 Phys. Rev. Lett. 94 037201
[3] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[5] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[6] Kim S Y, Lee M C, Han G, Kratochvilova M, Yun S, Moon S J, Sohn C, Park J G, Kim C Y and Noh T W 2018 Adv. Mater. 30 1704777
[7] Hu P, Hu P, Vu T D, Li M, Wang S, Ke Y, Zeng L, Mai L and Long Y 2023 Chem. Rev. 123 4353
[8] Li Y, Zhu Y, Wang M, Zhao M, Xue J, Chen J, Wu T and Chambers S A 2022 Adv. Funct. Mater. 32 2203491
[9] Wang L, Li H, Zhang W, Zhao X, Qiu J, Li A, Zheng X, Hu Z, Si R and Zeng J 2017 Angew. Chem. Int. Ed. 56 4712
[10] Xu X, Xiong F, Meng J, Wang X, Niu C, An Q and Mai L 2020 Adv. Funct. Mater. 30 1904398
[11] Mounasamy V, Mani G K and Madanagurusamy S 2020 Mikrochim. Acta 187 1
[12] Morin F J 1959 Phys. Rev. Lett. 3 34
[13] Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kiefferand J C and Schoenlein R W 2005 Phys. Rev. Lett. 95 67405
[14] Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K and Kachi S 1990 Phys. Rev. B 41 4993
[15] Berglund C N and Guggenheim H J 1969 Phys. Rev. 185 1022
[16] Savo S, Zhou Y, Castaldi G, Moccia M, Galdi V, Ramanathan S and Sato Y 2015 Phys. Rev. B 91 134105
[17] Kasrga T S, Sun D, Park J H, Coy J M, Fei Z, Xu X and Cobden D H 2012 Nat. Nanotechnol. 7 723
[18] Kats M A, Blanchard R, Zhang S. Genevet P, Ko C, Ramanathan S and Capasso F 2013 Phys. Rev. X 3 041004
[19] Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S and Xie Y 2011 J. Mater. Chem. A 21 4509
[20] Kang L, Gao Y and Luo H 2009 ACS Appl. Mater. Interfaces 1 2211
[21] Gao Y, Luo H, Zhang Z, Kang L, Chen Z, Du J, Kanehira M and Cao C 2012 Nano Energy 1 221
[22] Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y and Long Y 2019 J. Mater. Chem. C 7 2121
[23] Li M, Magdassi S, Gao Y and Long Y 2017 Small 13 1701147
[24] Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y and Gao Y 2023 Chem. Rev. 123 7025
[25] Manning T D, Parkin I P, Pemble M E, Sheel D and Vernardou D 2004 Chem. Mater. 16 744
[26] Soltani M, Chaker M, Haddad E and Kruzelesky R 2006 Meas. Sci. Technol. 17 1052
[27] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund J R F and Maier S A 2015 ACS Photon. 2 1306
[28] Haddad E, Kruzelecky R V, Murzionak P, Jamroz W, Tagziria K, Chaker M and Ledrogoff B 2022 Front. Mater. 9 1013848
[29] Xu C, Jin C, Chen Z, Lu Q, Cheng Y, Zhang B, Qi F, Chen J, Yin X, Wang G, Xiang D and Qian D 2023 Nat. Commun. 14 1265
[30] Li J, Wu L, Yang S, Jin X, Wang W, Tao J, Boatner L, Babzien M, Fedurin M, Palmer M and Zhu Y 2022 Phys. Rev. X 12 021032
[31] Hattori A N, Osaka A I, Hattori K, Naitoh Y, Shima H, Akinaga H and Tanaka H 2020 Crystals 10 631
[32] Ke Y, Wang S, Liu G, Li M, White T J and Long Y 2018 Small 14 1802025
[33] Wentzcovitch R M, Schulz W W and Allen P B 1994 Phys. Rev. Lett. 72 3389
[34] Eyert V 2002 Ann. Phys. 514 650
[35] Zhu Z and Schwingenschlogl U 2012 Phys. Rev. B 86 075149
[36] Eyert V. 2011 Phys. Rev. Lett. 107 016401
[37] Gatti M, Bruneval F, Olevano V and Reining L 2007 Phys. Rev. Lett. 99 266402
[38] Tomczak J M and Biermann S 2007 J. Phys.:Condens. Matter 19 365206
[39] Grau-Crespo R, Wang H and Schwingenschlogl 2012 Phys. Rev. B 86 081101
[40] Sommers C and Doniach S 1978 Solid State Commun. 28 133
[41] Abdellaoui I, Remli F, Mahmoudi A and Dergal M 2022 Solid State Commun. 347 114710
[42] Mohebbi E, Pavoni E, Mencarelli D, Stipa P, Pierantoni L and Laudadio E 2022 Nanoscale Adv. 4 3634
[43] Kim S, Kim K, Kang C J and Min B I 2013 Phys. Rev. B 87 195106
[44] Kinaci A, Kado M, Rosenmann D, Ling C, Zhu G, Banerjee D and Chan M K 2015 Appl. Phys. Lett. 107 262108
[45] Stahl B and Bredow T 2020 J. Comput. Chem. 41 258
[46] Cococcioni M and De Gironcoli S 2005 Phys. Rev. B 71 035105
[47] Sasoglu E, Friedrich C and Blugel S 2011 Phys. Rev. B 83 121101
[48] Wang Y C and Jiang H 2019 J. Chem. Phys. 150 154116
[49] Sakuma R, Miyake T and Aryasetiawan F 2008 Phys. Rev. B 78 075106
[50] Liu G H, Deng X Y and Wen R 2010 J. Mater. Sci. 45 3270
[51] Budai J D, Hong J, Manley, M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J and Delaire O 2014 Nature 515 535
[52] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[54] Blochl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[55] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[56] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[57] Togo A, Chaput L, Tanaka I and Hug G 2010 Phys. Rev. B 81 174301
[58] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[59] Baroni S, Giannozzi P and Isaev E 2011 arXiv:1112.4977[cond-mat.mtrl-sci]
[60] Longo J M, Kierkegaard P, Ballhausen C J, Ragnarsson U, Rasmussen S E, Sunde E and Sorensen N A 1970 Acta Chem. Scand. 24 420
[61] McWhan D B, Marezio M, Remeika J P and Dernier P D 1974 Phys. Rev. B 10 490
[62] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Damnes C, Hartnoll S A, Delaire O and Wu J 2017 Science 355 371
[63] Hua Z W, Zheng T, Sang J X, Xu X F, Wu B H and Wei L F 2021 J. Phys. D 54 355302
[64] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.:Condens. Matter 1 1941
[65] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383
[66] Chandrashekhar G V, Barros H L C and Honig J M 1973 Mater. Res. Bull. 8 369
[1] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[4] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[5] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[6] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[7] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[8] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[9] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[10] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[11] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[12] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[13] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[14] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[15] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
No Suggested Reading articles found!