CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices |
Zhiyuan Ma(马志远)1, Ying Li(李莹)1, Xian-Jiang Song(宋贤江)1, Zhi Yang(杨致)1, Li-Chun Xu(徐利春)1, Ruiping Liu(刘瑞萍)1, Xuguang Liu(刘旭光)2,3, Dianyin Hu(胡殿印)4,5 |
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; 3 College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 4 School of Energy and Power Engineering, Beihang University, Beijing 100191, China; 5 Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China |
|
|
Abstract Using Fe, Co or Ni chains as electrodes, we designed several annulene-based molecular spintronic devices and investigated the quantum transport properties based on density functional theory and non-equilibrium Green's function method. Our results show that these devices have outstanding spin-filter capabilities and exhibit giant magnetoresistance effect, and that with Ni chains as electrodes, the device has the best transport properties. Furthermore, we investigated the spin-polarized optoelectronic properties of the device with Ni electrodes and found that the spin-polarized photocurrents can be directly generated by irradiating the device with infrared, visible or ultraviolet light. More importantly, if the magnetization directions of the two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents.
|
Received: 16 November 2016
Revised: 17 March 2017
Accepted manuscript online:
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1510132, U1610255, 51401142, and 11604235), the Key Innovative Research Team in Science and Technology of Shanxi Province, China (Grant No. 201605D131045-10), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2015021027 and 2016021030), the Scientific and Technological Innovation Program of the Higher Education Institutions of Shanxi Province, China (Grant No. 2016140), and the Program for the Outstanding Innovative Teams of the Higher Learning Institutions of Shanxi Province, China. |
Corresponding Authors:
Zhi Yang
E-mail: yangzhi@tyut.edu.cn
|
Cite this article:
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印) Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices 2017 Chin. Phys. B 26 067201
|
[1] |
Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541
|
[2] |
Flood A, Stoddart J and Steuerman S and Heath J 2004 Science 306 2055
|
[3] |
Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
|
[4] |
Reed M A 1999 Proc. IEEE 87 652
|
[5] |
Liu K, Wang X and Wang F 2008 ACS Nano 2 2315
|
[6] |
Javaid S, Bowen M, Boukari S, Joly L, Beaufrand J B, Chen X, Dappe Y J, Scheurer F, Kappler J P, Arabski J, Wulfhekel W, Alouani M and Beaurepaire E 2010 Phys. Rev. Lett. 105 077201
|
[7] |
Takács A F, Witt F, Schmaus S, Balashov T, Bowen M, Beaurepaire E and Wulfhekel W 2008 Phys. Rev. B 78 233404
|
[8] |
Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615
|
[9] |
Wende H, Bernien M, Luo J, Sorg C, Ponpandian N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P, Kuch W, Baberschke K, Panchmatia P M, Sanyal B, Oppeneer P M and Eriksson O 2007 Nat. Mater. 6 516
|
[10] |
Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A M, Arrio M, Cornia A, Gatteschi D and Sessoli R 2009 Nat. Mater. 8 194
|
[11] |
Yang J F, Zhou L, Han Q and Wang X F 2012 J. Phys. Chem. C 116 19996
|
[12] |
Gajek M, Bibes M, Barthélémy A, Bouzehouane K, Fusil S, Varela M, Fontcuberta J and Fert A 2005 Phys. Rev. B 72 020406
|
[13] |
Müller M, Luysberg M and Schneider C M 2011 Appl. Phys. Lett. 98 142503
|
[14] |
Lee M, Williams J R, Zhang S, Frisbie C D and Gordon D G 2011 Phys. Rev. Lett. 107 256601
|
[15] |
Gütlich P and Goodwin H A 2004 Top. Curr. Chem. 233 1
|
[16] |
Antonangeli D, Siebert J, Aracne C M, Farber D L, Bosak A, Hoesch M, Krisch M, Ryerson F J, Fiquet G and Badro J 2011 Science 331 64
|
[17] |
Lupton J M, McCamey D R and Boehme C 2010 ChemPhysChem 11 304
|
[18] |
Wei J H, Liu X J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
|
[19] |
Chen B B, Jiang S W, Ding H F, Jiang Z S and Wu D 2014 Chin. Phys. B 23 018104
|
[20] |
Urdampilleta M, Klyatskaya S, Cleuziou J P, Ruben M and Wernsdorfer W 2011 Nat. Mater. 10 502
|
[21] |
Wu J C, Wang X F, Zhou L, Da H X, Lim K H, Yang S W and Li Z Y 2009 J. Phys. Chem. C 113 7913
|
[22] |
Petta J R, Slater S K and Ralph D C 2004 Phys. Rev. Lett. 93 136601
|
[23] |
Schmaus S, Bagrets A, Nahas Y, Yamada T K, Bork A, Bowen M, Beaurepaire E, Evers F and Wulfhekel W 2011 Nat. Nanotechnol. 6 185
|
[24] |
Matsuura Y 2015 Chem. Phys. Lett. 619 23
|
[25] |
Kong X, Cui B, Zhao W, Zhao J, Li D and Liu D 2014 Org. Electron. 15 3674
|
[26] |
Pati R, Senapati L, Ajayan P M and Nayak S K 2003 Phys. Rev. B 68 100407
|
[27] |
Chen T, Wang L, Li X, Luo K, Xu L, Li Q, Zhang X and Long 2014 RSC Adv. 4 60376
|
[28] |
Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175
|
[29] |
Zheng J, Deng X, Zhao J, Guo P, Guo C, Ren Z and Bai J 2015 Comput. Mater. Sci. 99 203
|
[30] |
Li J, Li T, Zhou Y, Wu W, Zhang L and Li H 2016 Phys. Chem. Chem. Phys. 18 28217
|
[31] |
Li X, Li H L, Wan H and Zhou G 2015 Org. Electron. 19 26
|
[32] |
Bulo R E, Trion L, Ehlers A W, Kanter F J, Schakel M, Lutz M, Spek A L, Lammertsma K 2004 Chem. Eur. J. 10 5332
|
[33] |
Choi C H and Kertesz M 1998 J. Phys. Chem. A 102 3429
|
[34] |
Dorn H C, Yannoni C S, Limbach H H and Vogel E 1994 J. Phys. Chem. 98 11628
|
[35] |
Scott L T and Brunsvold W R 1978 J. Am. Chem. Soc. 100 4320
|
[36] |
Barrett D G, Liang G B, McQuade D T, Desper J M, Schladetzky K D and Gellman S H 1994 J. Am. Chem. Soc. 116 10525
|
[37] |
Yang X F, Liu Y S, Zhang X, Zhou L P, Wang X F, Chi F, Feng J F 2014 Phys. Chem. Chem. Phys. 16 11349
|
[38] |
Caliskan S and Laref A 2014 Sci. Rep. 4 7363
|
[39] |
Caliskan S 2013 Phys. Lett. A 377 1766
|
[40] |
Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[41] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[42] |
Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Portal D S 2002 J. Phys.: Condens. Matter. 14 2745
|
[43] |
Svizhenko A, Anantram M P and Govindan T R 2005 IEEE Trans. Nanotechnol. 4 557
|
[44] |
Datta S and Houten H V 1996 Phys. Today 49 70
|
[45] |
For NanoDcal software, see http://nanoacademic.ca
|
[46] |
Chen J, Hu Y and Guo H 2012 Phys. Rev. B 85 155441
|
[47] |
Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Yang C H 2014 Phys. Lett. A 378 1540
|
[48] |
Zeng J and Chen K Q 2013 J. Mater. Chem. C 1 4014
|
[49] |
Zu F X, Liu Z L, Yao K L, Gao G Y, Fu H H, Zhu S C, Ni Y and Peng L 2014 Sci. Rep. 4 4838
|
[50] |
Zhao P, Wu Q H, Liu H Y, Liu D S and Chen G 2014 J. Mater. Chem. C 2 6648
|
[51] |
Wu Q H, Zhao P, Liu D S, Li S J and Chen G 2014 Org. Electron. 15 3615
|
[52] |
Jiang H, Kang D, Xie S and Saxena 2011 Org. Electron. 12 1264
|
[53] |
Yang Z, Ji Y L, Lan G, Xu L C, Liu X and Xu B 2015 Solid State Commun. 217 38
|
[54] |
Xie Y, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|