|
|
Direct measurement of nonlocal quantum states without approximation |
Gang Yang(杨冈), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓)†, and Shi-Ning Zhu(祝世宁) |
National Laboratory of Solid State Microstructure, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
|
Received: 11 August 2023
Revised: 31 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0705000) and the National Natural Science Foundation of China (Grant No. 11974178). |
Corresponding Authors:
Yan-Xiao Gong
E-mail: gongyanxiao@nju.edu.cn
|
Cite this article:
Gang Yang(杨冈), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Direct measurement of nonlocal quantum states without approximation 2023 Chin. Phys. B 32 110306
|
[1] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244 [2] Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471 [3] James D, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 [4] D'Ariano G M, Paris M G and Sacchi M F 2003 Advances in imaging and electron physics 128 206 [5] Resch K J, Walther P and Zeilinger A 2005 Phys. Rev. Lett. 94 070402 [6] Sosa-Martinez H, Lysne N K, Baldwin C H, Kalev A, Deutsch I H and Jessen P S 2017 Phys. Rev. Lett. 119 150401 [7] Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401 [8] Shabani A, Kosut R L, Mohseni M, Rabitz H, Broome M A, Almeida M P, Fedrizzi A and White A G 2011 Phys. Rev. Lett. 106 100401 [9] Schwemmer C, Tóth G, Niggebaum A, Moroder T, Gross D, Gühne O and Weinfurter H 2014 Phys. Rev. Lett. 113 040503 [10] Tonolini F, Chan S, Agnew M, Lindsay A and Leach J 2014 Sci. Rep. 4 1 [11] Kalev A, Kosut R L and Deutsch I H 2015 NPJ Quantum Inf. 1 1 [12] Banaszek K, Cramer M and Gross D 2013 New J. Phys. 15 125020 [13] Banaszek K, D'ariano G M, Paris M G A and Sacchi M F 1999 Phys. Rev. A 61 010304 [14] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188 [15] Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402 [16] Wu S J 2013 Sci. Rep 3 1193 [17] Salvail J Z, Agnew M, Johnson A S, Bolduc E, Leach J and Boyd R W 2013 Nat. Photonic 7 316 [18] Bamber C and Lundeen J S 2014 Phys. Rev. Lett. 112 070405 [19] Thekkadath G S and Giner L, Chalich Y, Horton M J, Banker J and Lundeen J S 2016 Phys. Rev. Lett. 117 120401 [20] Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C and Zhang Y S 2020 Phys. Rev. A 101 012119 [21] Mirhosseini M, Magaṇa-Loaiza O S, Rafsanjani S M H and Boyd R W 2014 Phys. Rev. Lett. 113 090402 [22] Shi Z M, Mirhosseini M, Margiewicz J, Malik M, Rivera F, Zhu Z Y and Boyd R W 2015 Optica 2 388 [23] Zhou Y Y, Zhao J P, Hay D, McGonagle K, Boyd R W and Shi Z M 2021 Phys. Rev. Lett. 127 040402 [24] Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J and Boyd R W 2014 Nat. Commun. 5 3115 [25] Debmalya D and Arvind 2014 Phys. Rev. A 89 062121 [26] Maccone L and Rusconi C C 2014 Phys. Rev. A 89 022122 [27] Zou P, Zhang Z M and Song W 2015 Phys. Rev. A 91 052109 [28] Calderaro L, Foletto G, Dequal D, Villoresi P and Vallone G 2018 Phys. Rev. Lett. 121 230501 [29] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502 [30] Zhu X M, Zhang Y X and Wu S J 2016 Phys. Rev. A 93 062304 [31] Ogawa K, Yasuhiko O, Kobayashi H, Nakanishi T and Tomita A 2019 New J. Phys. 21 043013 [32] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, S K, Xu J S, Han Y J and Li C F 2019 Phys. Rev. Lett. 123 150402 [33] Lundeen J S and Resch K J 2005 Phys. Lett. A 334 337 [34] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401 [35] Turek Y 2020 J. Phys. Commun. 4 075007 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|