|
|
Parameterized monogamy and polygamy relations of multipartite entanglement |
Zhong-Xi Shen(沈中喜)1,†, Ke-Ke Wang(王珂珂)1,‡, and Shao-Ming Fei(费少明)1,2,§ |
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China; 2 Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany |
|
|
Abstract Monogamy and polygamy relations are important properties of entanglement, which characterize the entanglement distribution of multipartite systems. We explore monogamy and polygamy relations of entanglement in multipartite systems by using two newly derived parameterized mathematical inequalities, and establish classes of parameterized monogamy and polygamy relations of multiqubit entanglement in terms of concurrence and entanglement of formation. We show that these new parameterized monogamy and poelygamy inequalities are tighter than the existing ones by detailed examples.
|
Received: 12 June 2023
Revised: 08 August 2023
Accepted manuscript online: 23 August 2023
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12075159 and 12171044), the Beijing Natural Science Foundation (Grant No.Z190005), and the Academician Innovation Platform of Hainan Province. |
Corresponding Authors:
Zhong-Xi Shen, Ke-Ke Wang, Shao-Ming Fei
E-mail: 18738951378@163.com;wangkk@cnu.edu.cn;feishm@cnu.edu.cn
|
Cite this article:
Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明) Parameterized monogamy and polygamy relations of multipartite entanglement 2023 Chin. Phys. B 32 120303
|
[1] Jafarpour M, Hasanvand F K and Afshar D 2017 Commun. Theor. Phys. 67 27 [2] Wang M Y, Xu J Z, Yan F L and Gao T 2018 Europhys. Lett. 123 60002 [3] Huang H L, Goswami A K, Bao W S and Panigrahi P K 2018 Sci. China Phys. Mech. Astron. 61 060311 [4] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46 [5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [6] Boyer M, Ran G, Dan K and Mor T 2009 Phys. Rev. A 79 032341 [7] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [8] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 [9] Terhal B M 2004 IBM J. Res. Dev. 48 71 [10] Kim J S, Gour G and Sanders B C 2012 Contemp. Phys. 53 417 [11] Guo Y and Gour G 2019 Phys. Rev. A 99 042305 [12] Pawlowski M 2010 Phys. Rev. A 82 032313 [13] Tomamichel M, Fehr S, Kaniewski J and Wehner S 2013 New J. Phys. 15 103002 [14] Seevinck M P 2010 Quantum Inf. Process. 9 273 [15] Ma X S, Dakic B, Naylor W, Zeilinger A and Walther P 2011 Nat. Phys. 7 399 [16] Verlinde E and Verlinde H 2013 J. High Energy Phys. 10 107 [17] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306 [18] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503 [19] Bai Y K, Zhang N, Ye M Y and Wang Z D 2013 Phys. Rev. A 88 012123 [20] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503 [21] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308 [22] Kim J S, Das A and Sanders B C 2009 Phys. Rev. A 79 012329 [23] He H and Vida G 2015 Phys. Rev. A 91 012339 [24] Kim J S 2010 Phys. Rev. A 81 062328 [25] Kim J S 2016 Ann. Phys. 373 197 [26] Luo Y, Tian T, Shao L H and Li Y M 2016 Phys. Rev. A 93 062340 [27] Kim J S and Sanders B C 2010 J. Phys. A: Math. Theor. 43 445305 [28] Wang Y X, Mu L Z, Vedral V and Fan H 2016 Phys. Rev. A 93 022324 [29] Kim J S and Sanders B C 2011 J. Phys. A: Math. Theor. 44 295303 [30] Khan A, Rehman J, Wang K and Shin H 2019 Sci. Rep. 9 16419 [31] Gao L M, Yan F L and Gao T 2020 Int. J. Theor. Phys. 59 3098 [32] Gao L M, Yan F L and Gao T 2021 Quantum Inf. Process. 20 332 [33] Gour G, Bandyopadhay S and Sanders B C 2007 Math. Phys. 48 012108 [34] Buscemi F, Gour G and Kim J S 2009 Phys. Rev. A 80 012324 [35] Kim J S 2012 Phys. Rev. A 85 062302 [36] Kim J S 2016 Phys. Rev. A 94 062338 [37] Guo Y 2018 Quantum Inf. Process. 17 222 [38] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304 [39] Jin Z X and Fei S M 2017 Quantum Inf. Process. 16 77 [40] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev A 97 032336 [41] Luo Y and Li Y M 2018 Commun. Theor. Phys. 69 532 [42] Yang L M, Chen B, Fei S M and Wang Z X 2019 Commun. Theor. Phys. 71 545 [43] Liu W W, Yang Z F and Fei S M 2021 Int. J. Theor. Phys. 60 4177 [44] Uhlmann A 2000 Phys. Rev. A 62 032307 [45] Rungta P, Buzek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315 [46] Albeverio S and Fei S M 2001 J. Opt. B: Quantum Semiclass. Opt. 3 223 [47] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [48] Acin A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev.Lett. 85 1560 [49] Gao X H and Fei S M 2008 Eur. Phys. J. Spec. Top. 159 71 [50] Laustsen T, Verstraete F and Van Enk S J 2003 Quantum Inf. Comput. 3 64 [51] Yu C S and Song H S 2008 Phys. Lett. A 373 727 [52] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329 [53] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [54] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [55] Cohen O 1998 Phys. Rev. Lett. 80 2493 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|