Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120303    DOI: 10.1088/1674-1056/acf300
GENERAL Prev   Next  

Parameterized monogamy and polygamy relations of multipartite entanglement

Zhong-Xi Shen(沈中喜)1,†, Ke-Ke Wang(王珂珂)1,‡, and Shao-Ming Fei(费少明)1,2,§
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China;
2 Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany
Abstract  Monogamy and polygamy relations are important properties of entanglement, which characterize the entanglement distribution of multipartite systems. We explore monogamy and polygamy relations of entanglement in multipartite systems by using two newly derived parameterized mathematical inequalities, and establish classes of parameterized monogamy and polygamy relations of multiqubit entanglement in terms of concurrence and entanglement of formation. We show that these new parameterized monogamy and poelygamy inequalities are tighter than the existing ones by detailed examples.
Keywords:  monogamy      polygamy      concurrence      entanglement of formation  
Received:  12 June 2023      Revised:  08 August 2023      Accepted manuscript online:  23 August 2023
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12075159 and 12171044), the Beijing Natural Science Foundation (Grant No.Z190005), and the Academician Innovation Platform of Hainan Province.
Corresponding Authors:  Zhong-Xi Shen, Ke-Ke Wang, Shao-Ming Fei     E-mail:  18738951378@163.com;wangkk@cnu.edu.cn;feishm@cnu.edu.cn

Cite this article: 

Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明) Parameterized monogamy and polygamy relations of multipartite entanglement 2023 Chin. Phys. B 32 120303

[1] Jafarpour M, Hasanvand F K and Afshar D 2017 Commun. Theor. Phys. 67 27
[2] Wang M Y, Xu J Z, Yan F L and Gao T 2018 Europhys. Lett. 123 60002
[3] Huang H L, Goswami A K, Bao W S and Panigrahi P K 2018 Sci. China Phys. Mech. Astron. 61 060311
[4] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Boyer M, Ran G, Dan K and Mor T 2009 Phys. Rev. A 79 032341
[7] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[8] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[9] Terhal B M 2004 IBM J. Res. Dev. 48 71
[10] Kim J S, Gour G and Sanders B C 2012 Contemp. Phys. 53 417
[11] Guo Y and Gour G 2019 Phys. Rev. A 99 042305
[12] Pawlowski M 2010 Phys. Rev. A 82 032313
[13] Tomamichel M, Fehr S, Kaniewski J and Wehner S 2013 New J. Phys. 15 103002
[14] Seevinck M P 2010 Quantum Inf. Process. 9 273
[15] Ma X S, Dakic B, Naylor W, Zeilinger A and Walther P 2011 Nat. Phys. 7 399
[16] Verlinde E and Verlinde H 2013 J. High Energy Phys. 10 107
[17] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[18] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[19] Bai Y K, Zhang N, Ye M Y and Wang Z D 2013 Phys. Rev. A 88 012123
[20] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503
[21] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[22] Kim J S, Das A and Sanders B C 2009 Phys. Rev. A 79 012329
[23] He H and Vida G 2015 Phys. Rev. A 91 012339
[24] Kim J S 2010 Phys. Rev. A 81 062328
[25] Kim J S 2016 Ann. Phys. 373 197
[26] Luo Y, Tian T, Shao L H and Li Y M 2016 Phys. Rev. A 93 062340
[27] Kim J S and Sanders B C 2010 J. Phys. A: Math. Theor. 43 445305
[28] Wang Y X, Mu L Z, Vedral V and Fan H 2016 Phys. Rev. A 93 022324
[29] Kim J S and Sanders B C 2011 J. Phys. A: Math. Theor. 44 295303
[30] Khan A, Rehman J, Wang K and Shin H 2019 Sci. Rep. 9 16419
[31] Gao L M, Yan F L and Gao T 2020 Int. J. Theor. Phys. 59 3098
[32] Gao L M, Yan F L and Gao T 2021 Quantum Inf. Process. 20 332
[33] Gour G, Bandyopadhay S and Sanders B C 2007 Math. Phys. 48 012108
[34] Buscemi F, Gour G and Kim J S 2009 Phys. Rev. A 80 012324
[35] Kim J S 2012 Phys. Rev. A 85 062302
[36] Kim J S 2016 Phys. Rev. A 94 062338
[37] Guo Y 2018 Quantum Inf. Process. 17 222
[38] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304
[39] Jin Z X and Fei S M 2017 Quantum Inf. Process. 16 77
[40] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev A 97 032336
[41] Luo Y and Li Y M 2018 Commun. Theor. Phys. 69 532
[42] Yang L M, Chen B, Fei S M and Wang Z X 2019 Commun. Theor. Phys. 71 545
[43] Liu W W, Yang Z F and Fei S M 2021 Int. J. Theor. Phys. 60 4177
[44] Uhlmann A 2000 Phys. Rev. A 62 032307
[45] Rungta P, Buzek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[46] Albeverio S and Fei S M 2001 J. Opt. B: Quantum Semiclass. Opt. 3 223
[47] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[48] Acin A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev.Lett. 85 1560
[49] Gao X H and Fei S M 2008 Eur. Phys. J. Spec. Top. 159 71
[50] Laustsen T, Verstraete F and Van Enk S J 2003 Quantum Inf. Comput. 3 64
[51] Yu C S and Song H S 2008 Phys. Lett. A 373 727
[52] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
[53] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[54] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[55] Cohen O 1998 Phys. Rev. Lett. 80 2493
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[4] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[5] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[6] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[7] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[8] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰). Chin. Phys. B, 2020, 29(2): 020305.
[9] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[12] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[13] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[14] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[15] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
No Suggested Reading articles found!