|
|
Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions |
Fengzheng Zhu(朱风筝)1,2, Genliang Li(黎根亮)1, Aihua Liu(刘爱华)1 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China |
|
|
Abstract We investigate the intensity effect of ultrashort assisting infrared laser pulse on the single-XUV-photon double ionization of helium atoms by solving full six-dimensional time-dependent Schrödinger equation with implement of finite element discrete variable representation. The studies of joint energy distributions and joint angular distributions of the two photoelectrons reveal the competition for ionized probabilities between the photoelectrons with odd parity and photoelectrons with even parity in single-XUV-photon double ionization process in the presence of weak infrared laser field, and such a competition can be modulated by changing the intensity of the weak assisting-IR laser pulses. The emission angles of the two photoelectrons can be adjusted by changing the laser parameters as well. We depict how the assisting-IR laser field enhances and/or enables the back-to-back and side-by-side emission of photoelectrons created in double ionization process.
|
Received: 21 March 2020
Revised: 28 April 2020
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
87.64.mn
|
(Multiphoton)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774131 and 91850114). |
Corresponding Authors:
Aihua Liu
E-mail: aihualiu@jlu.edu.cn
|
Cite this article:
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华) Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions 2020 Chin. Phys. B 29 073202
|
[1] |
Bengtsson S and Mauritsson J 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063002
|
[2] |
l'Huillier A, Lompre L, Mainfray G and Manus C 1982 Phys. Rev. Lett. 48 1814
|
[3] |
Schwarzkopf O, Krässig B, Elmiger J and Schmidt V 1993 Phys. Rev. Lett. 70 3008
|
[4] |
Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Lopez-Urrutia J C, Höhr C, Neumayer P, Ullrich J et al. 2001 Phys. Rev. Lett. 87 043003
|
[5] |
Maulbetsch F and Briggs J S 1993 J. Phys. B: At. Mol. Opt. Phys. 26 1679
|
[6] |
McCurdy C W, Baertschy M and Rescigno T N 2004 J. Phys. B: At. Mol. Opt. Phys. 37 R137
|
[7] |
Avaldi L and Huetz A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S861
|
[8] |
Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J et al. 2010 Nat. Photon. 4 641
|
[9] |
Rosenblum S, Bechler O, Shomroni I, Lovsky Y, Guendelman G and Dayan B 2016 Nat. Photon. 10 19
|
[10] |
Shintake T, Tanaka H, Hara T et al. 2008 Nat. Photon. 2 555
|
[11] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[12] |
Briggs J S and Schmidt V 2000 J. Phys. B: At. Mol. Opt. Phys. 33 R1
|
[13] |
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[14] |
Hasegawa H, Takahashi E J, Nabekawa Y, Ishikawa K L and Midorikawa K 2005 Phys. Rev. A 71 023407
|
[15] |
Huetz A, Selles P, Waymel D and Mazeau J 1991 J. Phys. B At. Mol. Opt. Phys. 24 1917
|
[16] |
Wannier G H 1953 Phys. Rev. 90 817
|
[17] |
Palacios A, Rescigno T N and McCurdy C W 2008 Phys. Rev. A 77 032716
|
[18] |
Bräuning H, Dörner R, Cocke C L, Prior M H et al. 1998 J. Phys. B: At. Mol. Opt. Phys. 31 5149
|
[19] |
Ye D F, Liu X and Liu J 2008 Phys. Rev. Lett. 101 233003
|
[20] |
Ho P J, Panfili R, Haan S L and Eberly J H 2005 Phys. Rev. Lett. 94 093002
|
[21] |
Li Y, Xu J, Yu B and Wang X 2020 Opt. Express 28 7341
|
[22] |
Meyer M, Cubaynes D, Glijer D et al. 2008 Phys. Rev. Lett. 101 193002
|
[23] |
Becker W, Grasbon F, Kopold R, Milošević D, Paulus G G and Walther H 2002 Adv. Atom. Mol. Opt. Phys. 48 35
|
[24] |
Pi L W and Starace A F 2014 Phys. Rev. A 90 023403
|
[25] |
Li J, Saydanzad E and Thumm U 2018 Phys. Rev. Lett. 120 223903
|
[26] |
Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett. 94 243901
|
[27] |
Wang J, Liu A and Yuan K J 2020 Opt. Commun. 460 125216
|
[28] |
Liao Q, Zhou Y, Huang C and Lu P 2012 New J. Phys. 14 013001
|
[29] |
Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schöffler M, Shafir D, Corkum P B, Baltuška A, Staudte A and Kitzler M 2014 Phys. Rev. Lett. 112 193002
|
[30] |
Hu S X 2013 Phys. Rev. Lett. 111 123003
|
[31] |
Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706
|
[32] |
Feist J, Nagele S, Pazourek R, Persson E, Schneider B, Collins L and Burgdörfer J 2008 Phys. Rev. A 77 043420
|
[33] |
Pazourek R, Feist J, Nagele S, Persson E, Schneider B, Collins L and Burgdörfer J 2011 Phys. Rev. A 83 053418
|
[34] |
Maulbetsch F and Briggs J S 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4095
|
[35] |
Zhang Z, Peng L Y, Xu M H, Starace A F, Morishita T and Gong Q 2011 Phys. Rev. A 84 043409
|
[36] |
Liu A and Thumm U 2014 Phys. Rev. A 89 063423
|
[37] |
Jin F C, Li F, Yang Y J, Chen J, Liu X J and Wang B B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 245601
|
[38] |
Jin F C, Tian Y Y, Chen J, Yang Y J, Liu X J, Yan Z C and Wang B B 2016 Phys. Rev. A 93 043417
|
[39] |
Hu S X 2010 Phys. Rev. E 81 056705
|
[40] |
Liu A and Thumm U 2015 Phys. Rev. A 91 043416
|
[41] |
Zhou S, Liu A, Liu F, Wang C and Ding D J 2019 Chin. Phys. B 28 083101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|