Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110206    DOI: 10.1088/1674-1056/acf11c
GENERAL Prev   Next  

Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations

Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军)
Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China
Abstract  Two (3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion (CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new Bäcklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.
Keywords:  (3+1)-dimensional shallow water wave equation      residual symmetry      consistent Riccati expansion  
Received:  17 May 2023      Revised:  11 August 2023      Accepted manuscript online:  17 August 2023
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 12175148).
Corresponding Authors:  Jun Yu     E-mail:  junyu@usx.edu.cn

Cite this article: 

Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军) Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations 2023 Chin. Phys. B 32 110206

[1] Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia, PA:SIAM)
[2] Hirota R 2004 Direct Method in Soliton Theory (Cambridge:Cambridge University Press)
[3] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin:Springer-Verlag)
[4] Xu L, Wang D S, Wen X Y and Jiang Y L 2020 J. Nonlinear Sci. 30 537
[5] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[6] Wang D S and Zhu X D 2022 Proc. R. Soc. A 478 0541
[7] Bilman D, Buckingham R and Wang D S 2021 J. Differential Equ. 297 320
[8] Lie S 1891 Vorlesungen ber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen (Leipzig:Teuber) (reprinted by Chelsea:New York; 1967)
[9] Olver P J 1993 Applications of Lie Groups to Differential Equations (NewYork:Springer-Verlag)
[10] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin:Springer-Verlag)
[11] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York:Springer)
[12] Lou S Y 1994 J. Math. Phys. 35 2336
[13] Liu X Z, Yu J and Ren B 2015 Chin. Phys. B 24 080202
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A:Math. Theor. 45 155209
[15] Lou S Y 1997 J. Phys. A:Math. Phys. 30 4803
[16] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298
[17] Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
[18] Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B 23 100201
[19] Liu P, Zeng B Q, Yang J R and Ren B 2015 Chin. Phys. B 24 010202
[20] Yu W F, Lou S Y, Yu J and Hu H W 2014 Chin. Phys. Lett. 31 070203
[21] Lou S Y 2015 Stud. Appl. Math. 134 372
[22] Ren B, Cheng X P and Lin J 2016 Nonlinear. Dyn. 86 1855
[23] Cheng W G, Li B and Chen Y 2015 Commun. Nonlinear Sci. Numer. Simul. 29 198
[24] Wang Y H and Wang H 2017 Nonlinear Dyn. 89 235
[25] Hua X R and Li Y Q 2016 Appl. Math. Lett. 51 20
[26] Wu J W, Cai Y J and Lin J 2022 Chin. Phys. B 31 030201
[27] Wu H Chen Q and Song J 2022 Appl. Math. Lett. 124 107640
[28] Hu Y, Zhang F and Xin X 2022 Comput. Appl. Math. 41 219
[29] Kim H C, Stemzel R L and Wong A Y 1974 Phys. Rev. Lett. 33 886
[30] Clarkson P A and Mansfield E L 1994 Nonlinearity 7 975
[31] Gao Y T and Tian B 1997 Comput. Math. with Appl. 33 115
[32] Kumar D and Kumar S 2019 Comput. Math. with Appl. 78 857
[33] Wazwaz A M 2009 Comput. Math. with Appl. 211 495
[34] Bogoyavlenskii O I 1990 Russ. Math. Surv. 45 1
[1] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[2] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[3] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[4] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[5] Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
Li-Li Huang(黄丽丽), Zhi-Jun Qiao(乔志军), Yong Chen(陈勇). Chin. Phys. B, 2018, 27(2): 020201.
[6] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[7] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
[8] The consistent Riccati expansion and new interaction solution for a Boussinesq-type coupled system
Ruan Shao-Qing (阮少卿), Yu Wei-Feng (余炜沣), Yu Jun (俞军), Yu Guo-Xiang (余国祥). Chin. Phys. B, 2015, 24(6): 060201.
[9] Explicit solutions from residual symmetry of the Boussinesq equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(3): 030202.
[10] Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2015, 24(1): 010203.
[11] Bäcklund transformations for the Burgers equation via localization of residual symmetries
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2014, 23(11): 110203.
[12] New interaction solutions of the Kadomtsev-Petviashvili equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2014, 23(10): 100201.
No Suggested Reading articles found!