Abstract Two (3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion (CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new Bäcklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 12175148).
Corresponding Authors:
Jun Yu
E-mail: junyu@usx.edu.cn
Cite this article:
Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军) Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations 2023 Chin. Phys. B 32 110206
[1] Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia, PA:SIAM) [2] Hirota R 2004 Direct Method in Soliton Theory (Cambridge:Cambridge University Press) [3] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin:Springer-Verlag) [4] Xu L, Wang D S, Wen X Y and Jiang Y L 2020 J. Nonlinear Sci.30 537 [5] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys.24 522 [6] Wang D S and Zhu X D 2022 Proc. R. Soc. A478 0541 [7] Bilman D, Buckingham R and Wang D S 2021 J. Differential Equ.297 320 [8] Lie S 1891 Vorlesungen ber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen (Leipzig:Teuber) (reprinted by Chelsea:New York; 1967) [9] Olver P J 1993 Applications of Lie Groups to Differential Equations (NewYork:Springer-Verlag) [10] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin:Springer-Verlag) [11] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York:Springer) [12] Lou S Y 1994 J. Math. Phys.35 2336 [13] Liu X Z, Yu J and Ren B 2015 Chin. Phys. B24 080202 [14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A:Math. Theor.45 155209 [15] Lou S Y 1997 J. Phys. A:Math. Phys.30 4803 [16] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion51 1298 [17] Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E89 043202 [18] Liu X Z, Yu J, Ren B and Yang J R 2014 Chin. Phys. B23 100201 [19] Liu P, Zeng B Q, Yang J R and Ren B 2015 Chin. Phys. B24 010202 [20] Yu W F, Lou S Y, Yu J and Hu H W 2014 Chin. Phys. Lett.31 070203 [21] Lou S Y 2015 Stud. Appl. Math.134 372 [22] Ren B, Cheng X P and Lin J 2016 Nonlinear. Dyn.86 1855 [23] Cheng W G, Li B and Chen Y 2015 Commun. Nonlinear Sci. Numer. Simul.29 198 [24] Wang Y H and Wang H 2017 Nonlinear Dyn.89 235 [25] Hua X R and Li Y Q 2016 Appl. Math. Lett.51 20 [26] Wu J W, Cai Y J and Lin J 2022 Chin. Phys. B31 030201 [27] Wu H Chen Q and Song J 2022 Appl. Math. Lett.124 107640 [28] Hu Y, Zhang F and Xin X 2022 Comput. Appl. Math.41 219 [29] Kim H C, Stemzel R L and Wong A Y 1974 Phys. Rev. Lett.33 886 [30] Clarkson P A and Mansfield E L 1994 Nonlinearity7 975 [31] Gao Y T and Tian B 1997 Comput. Math. with Appl.33 115 [32] Kumar D and Kumar S 2019 Comput. Math. with Appl.78 857 [33] Wazwaz A M 2009 Comput. Math. with Appl.211 495 [34] Bogoyavlenskii O I 1990 Russ. Math. Surv.45 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.