Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100202    DOI: 10.1088/1674-1056/acd9c2
GENERAL Prev   Next  

Effect of conformity on evolution of cooperation in a coordination game

Xianjia Wang(王先甲)1,2 and Tao Wang(王饕)1,†
1 Economics and Management School, Wuhan University, Wuhan 430072, China;
2 Institute of Systems Engineering, Wuhan University, Wuhan 430072, China
Abstract  Individual decision-making processes are not solely driven by self-interest maximization but are also influenced by the pressure to conform to the group. In primary games like the prisoner's dilemma, the presence of conformity pressure may facilitate the constructive development of cooperative behavior. In this study, we investigate how conformity influences the growth of cooperation in complicated coordination games. Our findings reveal that, even in the presence of stringent game rules, conformity can promote cooperation. In fact, a certain level of conformity pressure can even eliminate the "defection basin" of deer hunting games played on regular networks. Additionally, we demonstrate that the effect of conformity on cooperative behavior is contingent upon the degree of conformity pressure, with different levels of conformity pressure producing opposite effects. These findings provide novel insights into the promotion of cooperative evolution. For instance, if increasing the reward for cooperation has proven ineffective, manipulating the proportion of initial strategy choices may be a more promising approach.
Keywords:  cooperative evolution      complex network      conformity behavior      spatial dynamics  
Received:  28 February 2023      Revised:  16 May 2023      Accepted manuscript online:  30 May 2023
PACS:  02.50.Le (Decision theory and game theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 72031009), the National Social Science Foundation of China (Grant No. 20&ZD058), and the National Natural Science Foundation of China (Grant No. 72101189). The numerical calculations in this paper were carried out on the supercomputing system in the Supercomputing Center of Wuhan University.
Corresponding Authors:  Tao Wang     E-mail:  wtwhuem@whu.edu.cn

Cite this article: 

Xianjia Wang(王先甲) and Tao Wang(王饕) Effect of conformity on evolution of cooperation in a coordination game 2023 Chin. Phys. B 32 100202

[1] Rasmusen E 1990 Theory and Decision 29 161
[2] Axelrod R and Hamilton W D 1981 Science 211 1390
[3] Von Neumann J and Morgenstern O 1953 Theory of Games and Economic Behavior 3rd edn. (Princeton: Princeton University Press) p. 47
[4] Deutsch M 2011 Conflict, Interdependence, and Justice (New York: Springer) p. 23
[5] Deutsch M 1962 Nebraska Symposium on Motivation Vol. 01 p. 275
[6] Axelrod R 1980 J. Conflict Resolution 24 3
[7] Rapoport A, Chammah A M and Orwant C J 1965 Prisoner's Dilemma: A study in Conflict and Cooperation (University of Michigan Press) p. 34
[8] Hauert C and Doebeli M 2004 Nature 428 643
[9] Nowak M A and May R M 1993 Int. J. Bifur. Chaos 3 35
[10] Nowak M A and May R M 1992 Nature 359 826
[11] Skyrms B 2004 The Stag Hunt and the Evolution of Social Structure (Cambridge: Cambridge University Press) pp. 34
[12] Luo Q, Liu L and Chen X 2021 Physica D 424 132943
[13] Rusch H 2019 Games and Economic Behavior 114 118
[14] Stiglitz J E 1999 Global Public Goods: International Cooperation in the 21st Century (New York: Oxford University Press) p. 308
[15] Liu J, Meng H, Wang W, Li T and Yu Y 2018 Chaos, Solitons & Fractals 109 214
[16] Nowak M and Sigmund K 1993 Nature 364 56
[17] Zhao L, Zhou X, Liang Z and Wu J R 2012 Chin. Phys. B 21 018701
[18] Strogatz S H 2001 Nature 410 268
[19] Nowak M A 2006 Science 314 1560
[20] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[21] Newman M E and Watts D J 1999 Phys. Lett. A 263 341
[22] Barabási A L and Bonabeau E 2003 Sci. Am. 288 60
[23] Dui H, Meng X, Xiao H and Guo J 2020 Reliability Engineering & System Safety 199 106919
[24] Fortunato S, Flammini A and Menczer F 2006 Phys. Rev. Lett. 96 218701
[25] Wang X J and Wang L L 2022 Chin. Phys. B 31 080204
[26] Alves L G, Mangioni G, Cingolani I, Rodrigues F A, Panzarasa P and Moreno Y 2019 Sci. Rep. 9 2866
[27] Ding R, Ujang N, bin Hamid H, Abd Manan M S, He Y, Li R and Wu J 2018 Physica A 503 800
[28] Jian-Yue G, Zhi-Xi W, Zi-Gang H and Ying-Hai W 2010 Chin. Phys. B 19 020203
[29] Rand D G, Dreber A, Ellingsen T, Fudenberg D and Nowak M A 2009 Science 325 1272
[30] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[31] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[32] Camerer C F and Fehr E 2006 Science 311 47
[33] Szolnoki A, Wang Z and Perc M 2012 Sci. Rep. 2 576
[34] Wooders M, Cartwright E and Selten R 2006 Games and Economic Behavior 57 347
[35] Hu K, Guo H, Geng Y and Shi L 2019 Physica A 516 267
[36] Johnson M E, Moore L M and Ylvisaker D 1990 J. Stat. Plan. Inference 26 131
[37] Szolnoki A and Perc M 2015 J. R. Soc. Interface 12 20141299
[38] Jiang Y, Ho Y C, Yan X and Tan Y 2022 Information Systems Research 33 1
[39] Kollock P 1998 Ann. Rev. Sociol. 24 183
[40] Hauser O P, Hilbe C, Chatterjee K and Nowak M A 2019 Nature 572 524
[41] Szolnoki A and Chen X 2018 New J. Phys. 20 093008
[42] Bernheim B D 1994 J. Political Economy 102 841
[43] Cialdini R B and Goldstein N J 2004 Annu. Rev. Psychol. 55 591
[44] Chen X, Li S, Zhang Y, Zhai Y, Zhang Z and Feng C 2022 Psych. J. 11 247
[45] Zhang L, Huang C, Li H, Dai Q and Yang J 2021 Physica A 561 125260
[46] Feng C, Cao J, Li Y, Wu H and Mobbs D 2018 Social Cognitive and Affective Neuroscience 13 809
[47] Shimojo S, Simion C, Shimojo E and Scheier C 2003 Nat. Neurosci. 6 1317
[48] Newton J 2017 Games and Economic Behavior 104 517
[49] Newton J and Angus S D 2015 J. Economic Theory 157 172
[50] Sawa R 2014 Games and Economic Behavior 88 90
[51] Newton J 2012 Games and Economic Behavior 75 842
[52] McAdams R H 2008 Southern California Law Review 82 209
[53] Gaisbauer F, Strandburg-Peshkin A and Giese H 2022 Social Networks 70 218
[54] Pacheco J M, Santos F C, Souza M O and Skyrms B 2009 Proc. R. Soc. B: Biol. Sci. 276 315
[55] Szolnoki A and Perc M 2016 Sci. Rep. 6 23633
[56] Szabó G and Fath G 2007 Phys. Rep. 446 97
[57] Taylor P D and Jonker L B 1978 Math. Biosci. 40 145
[58] Taylor C, Fudenberg D, Sasaki A and Nowak M A 2004 Bull. Math. Biol. 66 1621
[59] Fang C, Kimbrough S O, Pace S, Valluri A and Zheng Z 2002 Group Decision and Negotiation 11 449
[1] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[2] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[3] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[4] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[5] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[6] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[7] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[8] Detection of EEG signals in normal and epileptic seizures with multiscale multifractal analysis approach via weighted horizontal visibility graph
Lu Ma(马璐), Yan-lin Ren(任彦霖), Ai-jun He(何爱军), De-qiang Cheng(程德强), and Xiao-dong Yang(杨小冬). Chin. Phys. B, 2023, 32(11): 110506.
[9] Quasi-synchronization of fractional-order complex networks with random coupling via quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2023, 32(11): 110501.
[10] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜),Shao-Qing Lu(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[13] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[14] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[15] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
No Suggested Reading articles found!