Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013104    DOI: 10.1088/1674-1056/25/1/013104
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

Yexin Feng(冯页新)1, Ji Chen(陈基)1, Xin-Zheng Li(李新征)2,3, Enge Wang(王恩哥)1,3
1. International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China;
2. School of Physics, Peking University, Beijing 100871, China;
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice.

Keywords:  ab initio calculations      isotope      molecular dynamics      hydrogen bonds  
Received:  21 May 2015      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  67.63.-r (Hydrogen and isotopes)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

Corresponding Authors:  Xin-Zheng Li     E-mail:  xzli@pku.edu.cn

Cite this article: 

Yexin Feng(冯页新), Ji Chen(陈基), Xin-Zheng Li(李新征), Enge Wang(王恩哥) Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds 2016 Chin. Phys. B 25 013104

[1] Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 Nature 397 601
[2] Marrone J A and Car R 2008 Phys. Rev. Lett. 101 017801
[3] Fanourgakis G S, Schenter G K and Xantheas S S 2006 J. Chem. Phys. 125 141102
[4] Habershon T E, Markland S and Manolopoulos D E 2009 J. Chem. Phys. 131 024501
[5] Chen B, Ivanov I, Klein M L and Parrinello M 2003 Phys. Rev. Lett. 91 215503
[6] Li X Z, Probert M I J, Alavi A and Michaelides A 2010 Phys. Rev. Lett. 104 066102
[7] Li X Z, Walker B and Michaelides A 2011 Proc. Natl. Acad. Sci. USA 108 6369
[8] Matsushita E and Matsubara T 1982 Prog. Theor. Phys. 67 1
[9] Ubbelohde A R and Gallagher K J 1955 Acta. Crystallogr. 8 71
[10] Marrone J A, Lin L and Car R 2009 J. Chem. Phys. 130 204511
[11] Burnham C J, Anick D J, Mankoo P K and Reiter G F 2008 J. Chem. Phys. 128 154519
[12] Meng X Z 2015 Nat. Phys. 11 235
[13] Zhang D H, Collins M A and Lee S Y 2000 Science 290 961
[14] Liu K 2001 Annu. Rev. Phys. Chem. 52 139
[15] Collins M A 2002 Theo. Chem. Acc. 108 313
[16] Althorpe S C and Clary D C 2003 Annu. Rev. Phys. Chem. 54 593
[17] Qiu M H 2006 Science 311 1440
[18] Feynman R P 1949 Phys. Rev. 76 769
[19] Feynman R P 1953 Phys. Rev. 90 1116
[20] Feynman R P 1953 Phys. Rev. 91 1291
[21] Feynman R P 1953 Phys. Rev. 91 1301
[22] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill Inc.)
[23] Chandler D and Wolynes P G 1981 J. Chem. Phys. 74 4078
[24] Parrinello M and Rahman A 1984 J. Chem. Phys. 80 860
[25] Berne B J and Thirumalai D 1986 Annu. Rev. Phys. Chem. 37 401
[26] Pollock E L and Ceperley D M 1984 Phys. Rev. B 30 2555
[27] Ceperley D M and Pollock E L 1986 Phys. Rev. Lett. 56 351
[28] Pollock E L and Ceperley D M 1987 Phys. Rev. B 36 8343
[29] Ceperley D M 1995 Rev. Mod. Phys. 67 279
[30] Tuckerman M E, Marx D, Klein M L and Parrinello M 1996 J. Chem. Phys. 104 5579
[31] Marx D and Parrinello M 1996 J. Chem. Phys. 104 4077
[32] Morales M A, Pierleoni C, Schwegler E and Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799
[33] Li X Z 2013 J. Phys.: Condens. Matter 25 085402
[34] Chen J 2013 Nat. Commun. 4 2064
[35] Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702
[36] Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. B 87 184107
[37] Davidson E R M, Klimes J, Alf'e D and Michaelides A 2014 ACS Nano 8 9905
[38] Tachikawa M and Shiga M 2005 J. Am. Chem. Soc. 127 11908
[39] Kaczmarek A, Shiga M and Marx D 2009 J. Phys. Chem. A 113 1985
[40] Tozzini V 2005 Curr. Opin. Struct. Biol. 15 144
[41] Bartels C and Karplus M 1998 J. Phys. Chem. B 102 865
[42] Sugita Y and Okamoto Y 1999 Chem. Phys. Lett. 314 141
[43] Laio A and Parrinello M 2002 Proc. Natl. Acad. Sci. USA 99 12562
[44] Gao Y Q, Yang L J, Fan Y B and Shao Q 2008 Int. Rev. Phys. Chem. 27 201
[45] Pérez A and von Lilienfeld O A 2011 J. Chem. Theory Comput. 7 2358
[46] Habershon S and Manolopoulos D E 2011 J. Chem. Phys. 135 224111
[47] Li X Z and Wang E G 2014 Computer Simulations of Molecules and Condensed Matters: From Electronic Structures to Molecular Dynamics (Beijing: Peking University Press)
[48] Stroobants A, Lekkerkerker H N W and Frenkel D 1987 Phys. Rev. A 36 2929
[49] Frenkel D, Lekkerkerker H N W and Stroobants A 1988 Nature 332 822
[50] Meijer E J, Frenkel D, LeSar R A and Ladd A J C 1990 J. Chem. Phys. 92 7570
[51] Meijer E J and Frenkel D 1991 J. Chem. Phys. 94 2269
[52] Eldridge M D, Madden P A and Frenkel D 1993 Nature 365 35
[53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[54] Clark S J 2005 Z. Kristallogr 220 567
[55] Tuckerman M E, Berne B J, Martyna G J and Klein M L 1993 J. Chem. Phys. 99 2796
[56] Feng Y X, Chen J, Alfé D, Li X Z, Wang E G, et al. 2015 J. Chem. Phys. 142 064506
[57] Feng Y X et al. to be submitted
[58] Andersen H C 1980 J. Chem. Phys. 72 2384
[59] Raugei S and Klein M L 2003 J. Am. Chem. Soc. 125 8992
[60] Gregory J K and Clary D C 1996 J. Phys. Chem. 100 18014
[61] Clary D C, Benoit D M and van Mourik T 2000 Acc. Chem. Res. 33 441
[62] Wendler K, Thar J, Zahn S and Kirchner B 2010 J. Phys. Chem. A 114 9529
[63] Xantheas S S and Dunning T H 1993 J. Chem. Phys. 99 8774
[64] Cubero E, Orozco M, Hobza P and Luque F J 1999 J. Phys. Chem. A 103 6394
[65] Swalina C, Wang Q, Chakraborty A and Hammes-Schiffer S 2007 J. Phys. Chem. A 111 2206
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!