Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 116102    DOI: 10.1088/1674-1056/25/11/116102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantitative determination of anti-structured defects applied to alloys of a wide chemical range

Jing Zhang(张静), Zheng Chen(陈铮), Yongxin Wang(王永欣), Yanli Lu(卢艳丽)
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure. Component distribution Ni75 AlxV25-x alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition, precipitate order, precipitate type, and phase stability. The Ni75 AlxV25-x alloys undergo single Ni3 V (stage I), dual Ni3 Al and Ni3 V (stage Ⅱ with Ni3 V prior; and stage Ⅲ with Ni3 Al prior), and single Ni3 Al (stage IV) with enhanced aluminum level. For Ni3 V phase, anti-structured defects (VNi1, NiV, except VNi2) and substitution defects (AlNi1, AlNi2, AlV) exhibit a positive correlation to aluminum in stage I, the positive trend becomes to negative correlation or smooth during stage Ⅱ. For Ni3 Al phase, anti-structured defects (AlNi, NiAl) and substitution defects (VNi, VAl) have a positive correlation to aluminum in stage Ⅱ, but NiAl goes down since stage Ⅲ and lasts to stage IV. VNi and VAl fluctuate when Ni3 Al precipitates prior, but go down drastically in stage IV. Precipitate type conversion of single Ni3 V/dual (Ni3 V+Ni3 Al) affects Ni3 V defects, while dual (Ni3 V+Ni3 Al)/single Ni3 Al has little effect on Ni3 Al defects. Precipitate order swap occurred in the dual phase region affects on Ni3 Al defects but not on Ni3 V.
Keywords:  microscopic phase field      anti-structured defects      substitution defect      atom occupancy  
Received:  15 June 2016      Revised:  10 July 2016      Accepted manuscript online: 
PACS:  61.72.J- (Point defects and defect clusters)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.30.Mh (Solid-phase precipitation)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5014), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01024), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 114-QP-2014), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136102120021), and the National Natural Science Foundation of China (Grant Nos. 51474716 and 51475378).
Corresponding Authors:  Jing Zhang     E-mail:  Jingzhang@nwpu.edu.cn

Cite this article: 

Jing Zhang(张静), Zheng Chen(陈铮), Yongxin Wang(王永欣), Yanli Lu(卢艳丽) Quantitative determination of anti-structured defects applied to alloys of a wide chemical range 2016 Chin. Phys. B 25 116102

[1] Ding H, Medasani B, Chen W, Persson K A, Haranczyk M and Asta M 2015 Comput. Phys. Commun. 193 118
[2] Bai J, Wang X S, Zu Q R, Zhao X and Zuo L 2016 Acta Phys. Sin. 65 96103(in Chinese)
[3] Yu S, Wang C Y and Yu T 2007 Acta Phys. Sin. 56 3212(in Chinese)
[4] Groñhagen K, Ågren J and Odeń M 2015 Scripta Mater. 95 42
[5] Li Y S, Chen X L, Xu F and Du Y L 2011 Chin. Phys. Lett. 28 106601
[6] Zawadzki P, Zakutayev A and Lany S 2015 Phys. Rev. B 92 201204
[7] Devaraju M K, Truong Q D, Hyodo H, Sasaki Y and Honma I 2015 Sci. Rep. 51 11041
[8] Song J X, Yang Y T, Guo L X, Wang P and Zhang Z Y 2012 Acta Phys. Sin. 61 237301(in Chinese)
[9] Zhang Z, Bai B, Peng H and Guo H 2015 Mater. Design 88 667
[10] Tingaud D and Besson R 2014 Intermetallics 45 38
[11] Breuer J, Sommer F and Mittemeijer E J 2002 Phil. Mag. A 82 479
[12] Frank S, Divinski S V, Södervall U and Herzig C 2001 Acta Mater. 49 1399
[13] Kao C R and Chang Y A 1993 Intermetallics 1 237
[14] Kurzawski L and Malarz K 2012 Rep. Math. Phys. 70 163
[15] Herzig C and Divinski S 2004 Intermetallics 12 993
[16] Drautz R and Fähnle M 1999 Acta Mater. 47 2437
[17] Belova I V and Murch G E 2002 Philos. Mag. A 82 269
[18] Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A and Johansson B 2000 Phys. Rev. B 61 6003
[19] Bocquet J L 2015 Philos. Mag. 95 394
[20] Du Y, Chang Y A, Huang B, Gong W, Jin Z, Xu H, Yuan Z, Liu Y and Xie F Y 2003 Mater. Sci. Eng. A 363 140
[21] Gopal P and Srinivasan S G 2012 Phys. Rev. B 86 014112
[22] Duan J 2007 J. Phys.:Condens. Matter 19 086217
[23] Murch G E and Belova I V 2001 J. Mater. Process. Tech. 118 82
[24] Marteau L, Pareige C and Blavette D 2001 J. Microsc. 204 247
[25] Wang J S 1998 Acta Mater. 46 2663
[26] Ruban A V, Popov V A, Portnoi V K and Bogdanov V I 2014 Philos. Mag. 94 20
[27] Wu Q and Li S 2012 Comp. Mater. Sci. 53 436
[28] Kundin J, Wang P, Emmerich H and Schimid-Fetzer R 2014 Eur. Phys. J. Spec. Top. 223 567
[29] Ta N, Zhang L, Tang Y, Chen W and Du Y 2015 Surf Coat. Tech. 261 364
[30] Gránásy L, Rátkai L, Szállás A, Korbuly B, Tòth G I, Környei L and Pusztai T 2014 Metall. Mater. Trans. A 45 1694
[31] Yang T, Zhang J, Long J, Long Q H and Chen Z 2014 Chin. Phys. B 23 088109
[32] Poduri R and Chen L Q 1998 Acta Mater. 46 1719
[1] Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友). Chin. Phys. B, 2022, 31(11): 116103.
[2] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[3] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
[4] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[5] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[6] In situ luminescence measurement of 6H-SiC at low temperature
Meng-Lin Qiu(仇猛淋), Peng Yin(殷鹏), Guang-Fu Wang(王广甫), Ji-Gao Song(宋纪高), Chang-Wei Luo(罗长维), Ting-Shun Wang(王庭顺), Guo-Qiang Zhao(赵国强), Sha-Sha Lv(吕沙沙), Feng-Shou Zhang(张丰收), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 046106.
[7] First-principles study of oxygen adsorbed on Au-doped RuO2 (110) surface
Ji Zhang(张季), De-Ming Zhang(张德明). Chin. Phys. B, 2019, 28(11): 116107.
[8] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
[9] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[10] Photodynamics of GaZn-VZn complex defect in Ga-doped ZnO
Ai-Hua Tang(汤爱华), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Xiao-Long Du(杜小龙). Chin. Phys. B, 2018, 27(11): 117802.
[11] Boron diffusion in bcc-Fe studied by first-principles calculations
Xianglong Li(李向龙), Ping Wu(吴平), Ruijie Yang(杨锐杰), Dan Yan(闫丹), Sen Chen(陈森), Shiping Zhang(张师平), Ning Chen(陈宁). Chin. Phys. B, 2016, 25(3): 036601.
[12] Defect stability in thorium monocarbide: An ab initio study
Wang Chang-Ying (王昌英), Han Han (韩晗), Shao Kuan (邵宽), Cheng Cheng (程诚), Huai Ping (怀平). Chin. Phys. B, 2015, 24(9): 097101.
[13] Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles
Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan. Chin. Phys. B, 2015, 24(4): 046102.
[14] Localized deep levels in AlxGa1-xN epitaxial films with various Al compositions
Shi Li-Yang (时俪洋), Shen Bo (沈波), Yan Jian-Chang (闫建昌), Wang Jun-Xi (王军喜), Wang Ping (王平). Chin. Phys. B, 2014, 23(11): 116102.
[15] Epitaxial evolution on buried cracks in a strain-controlled AlN/GaN superlattice interlayer between AlGaN/GaN multiple quantum wells and a GaN template
Huang Cheng-Cheng (黄呈橙), Zhang Xia (张霞), Xu Fu-Jun (许福军), Xu Zheng-Yu (许正昱), Chen Guang (陈广), Yang Zhi-Jian (杨志坚), Tang Ning (唐宁), Wang Xin-Qiang (王新强), Shen Bo (沈波). Chin. Phys. B, 2014, 23(10): 106106.
No Suggested Reading articles found!