Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 016103    DOI: 10.1088/1674-1056/ac2e5e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Polymorph selection of magnesium under different pressures: A simulation study

Wei Liu(刘维)1, Boqiang Wu(吴博强)1, Ze'an Tian(田泽安)2, Yunfei Mo(莫云飞)3, Tingfei Xi(奚廷斐)4, Zhiyi Wan(万子义)4, Rangsu Liu(刘让苏)2, and Hairong Liu(刘海蓉)1,†
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 School of Physics and Microelectronics, Hunan University, Changsha 410082, China;
3 School of Electronics and Communication Engineering, Changsha University, Changsha 410003, China;
4 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Molecular dynamics simulations were used to investigate the influence of pressure on the structural properties and dynamics of magnesium (Mg) during rapid solidification. The dynamics analysis revealed that, with an increase in pressure, the dynamics of Mg melt slowed down sharply and the dynamical heterogeneities increased, leading to a denser structure. Atom-level structural analysis using the cluster-type index method suggested that the predominant structure transformed from hexagonal closed-packed to face-centered cubic with increasing pressure from 0 GPa to 5 GPa, and then transformed to the A15 complex crystal structure as the pressure increased above 10 GPa. In addition, the nature of polymorph selection was investigated by analyzing the phonon dispersion of Mg under different pressures. These findings provide a novel insight into polymorphic transitions of Mg under pressure and guide the selection of Mg polymorphs for practical applications.
Keywords:  magnesium      polymorph selection      molecular dynamics      pressure  
Received:  03 June 2021      Revised:  22 September 2021      Accepted manuscript online:  11 October 2021
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.25.Mv (Liquid metals and alloys)  
  64.70.dm (General theory of the solid-liquid transition)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFGX090043).
Corresponding Authors:  Hairong Liu     E-mail:  liuhairong@hnu.edu.cn

Cite this article: 

Wei Liu(刘维), Boqiang Wu(吴博强), Ze'an Tian(田泽安), Yunfei Mo(莫云飞), Tingfei Xi(奚廷斐), Zhiyi Wan(万子义), Rangsu Liu(刘让苏), and Hairong Liu(刘海蓉) Polymorph selection of magnesium under different pressures: A simulation study 2022 Chin. Phys. B 31 016103

[1] Robertson J 2002 Mater. Sci. Eng. R 37 129
[2] Duyar C O and Taner Z 2015 Diamond. Relat. Mater. 56 29
[3] Casiraghi C, Robertson J and Ferrari A C 2007 Materials Today 10 44
[4] Wang S F, Pu J C and Sung J C 2009 Thin Solid Films 517 1821
[5] Masteghin M G, Ahmad M, Tas M O, Smith C T G, Stolojan V, Cox D C and Silva S R P 2020 Appl. Phys. Lett. 116 103101
[6] Wan S, Wang L, Zhang J and Xue Q 2009 Appl. Surf. Sci. 255 3817
[7] Bachmann T A, Alexeev A M, Koelmans W W, Zipoli F, Ou A K, Dou C, Ferrari A C, Nagareddy V K, Craciun M F, Jonnalagadda V P, Curioni A, Sebastian A, Eleftheriou E and Wright C D 2017 IEEE Trans. Nanotechnol. 16 806
[8] Liu Z C and Wang L 2020 Nanotechnology 31 385204
[9] Caicedo-Davila S, Lopez-Acevedo O, Velasco-Medina J and Avila A 2016 J. Appl. Phys. 120 214303
[10] Deringer V L and Csanyi G 2017 Phys. Rev. B 95 094203
[11] Galli G, Martin R M, Car R and Parrinello M 1989 Phys. Rev. Lett. 62 555
[12] Mathioudakis C, Kopidakis G and Kelires P C 2004 Phys. Rev. B. 70 125202
[13] Liu L, Lu F, Tian J, Xia S and Diao Y 2019 Appl. Phys. A 125 366
[14] Singh P, Kaur G, Ghorai N, Goswami T, Thakur A and Ghosh H N 2020 Phys. Rev. Appl. 14 014087
[15] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[16] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[17] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Blochl P E 1994 Phys. Rev. B 50 17953
[21] Fallon P J, Veerasamy V S, Davis C A, Robertson J, Amaratunga G A J, Milne W I and Koskinen J 1993 Phys. Rev. B 48 4777
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Ozaki T and Kino H 2005 Phys. Rev. B 72 045121
[24] Ozaki T and Kino H 2004 Phys. Rev. B 69 195113
[25] Ozaki T 2007 Phys. Rev. B 75 035123
[26] Ozaki T 2003 Phys. Rev. B 67 155108
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Goclon J 2020 Appl. Surf. Sci. 532 147267
[29] Bundy F P 1962 Science 137 1057
[30] Gao J C, Wu Q S, Persson C and Wang Z J 2021 Comput. Phys. Commun. 261 107760
[31] Shumkin G N, Zipoli F, Popov A M and Curioni A 2012 Proc. Comp. Sci. 9 641
[32] Ruppert A F, Persans P D, Hughes G J, Liang K S, Abeles B and Lanford W 1991 Phys. Rev. B 44 11381
[33] Tripathi M N, Shida K, Sahara R, Mizuseki H and Kawazoe Y 2012 J. Appl. Phys. 111 103110
[34] Rios C, Hosseini P, Wright C D, Bhaskaran H and Pernice W H P 2014 Adv. Mater. 26 1372
[35] Rios C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, and Pernice W H P 2015 Nat. Photon. 9 725
[36] Rios C, Stegmaier M, Cheng Z G, Youngblood N, Wright C D, Pernice W H P and Bhaskaran H 2018 Opt. Mater. Express 8 2455
[37] Wang L, Gong S D, Yang C H and Wen J 2016 Nanotechnol. Rev. 5 461
[38] Santini C A, Sebastian A, Marchiori C, Jonnalagadda V P, Dellmann L, Koelmans W W, Rossell M D, Rossel C P and Eleftheriou E 2015 Nat. Commun. 6 8600
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[14] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[15] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
No Suggested Reading articles found!