Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴),Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰)†
Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
Abstract Ruddlesden-Popper iridate Sr3Ir2O7 is a spin-orbit coupled Mott insulator. Hole doped Sr3Ir2O7 provides an ideal platform to study the exotic quantum phenomena that occur near the metal-insulator transition (MIT) region. Rh substitution of Ir is an effective method to induce hole doping into Sr3Ir2O7. However, the highest doping level reported in Sr3(Ir1-xRhx)2O7 single crystals was only around 3%, which is far from the MIT region. In this paper, we report the successful growth of single crystals of Sr3(Ir1-xRhx)2O7 with a doping level of ~ 9%. The samples have been fully characterized, demonstrating the high quality of the single crystals. Transport measurements have been carried out, confirming the tendency of MIT in these samples. The electronic structure has also been examined by angle-resolved photoemission spectroscopy (ARPES) measurements. Our results establish a platform to investigate the heavily hole doped Sr3Ir2O7 compound, which also provide new insights into the MIT with hole doping in this material system.
(Strongly correlated electron systems; heavy fermions)
Fund: The work at University of Science and Technology of China (USTC) was supported by the USTC start-up fund, the National Natural Science Foundation of China (Grant Nos.12074358 and 12004363),the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000008 and WK2030000035), and the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302802). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No.DE-AC02-76SF00515.
Corresponding Authors:
Junfeng He
E-mail: jfhe@ustc.edu.cn
Cite this article:
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰) Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7 2023 Chin. Phys. B 32 087108
[1] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys.70 1039 [2] Dynes R C, Garno J P, Hertel G B and Orlando T P 1984 Phys. Rev. Lett.53 2437 [3] Klein T, Achatz P, Kacmarcik J, Marcenat C, Gustafsson F, Marcus J, Bustarret E, Pernot J, Omnes F, Sernelius B E, Persson C, Ferreira da Silva A and Cytermann C 2007 Phys. Rev. B75 165313 [4] García-Muñoz J L, Rodríguez-Carvajal J and Lacorre P 1992 Europhys. Lett.20 241 [5] Lee C H, Matsuhata H, Yamaguchi H, Sekine C, Kihou K, Suzuki T, Noro T and Shirotani I 2004 Phys. Rev. B70 153105 [6] Hillenius S J, Coleman R V, Fleming R M and Cava R J 1981 Phys. Rev. B23 1567 [7] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Phys. Rev. B49 9198 [8] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C and Noh T W 2008 Phys. Rev. Lett.101 226402 [9] Bertinshaw J, Kim Y K, Khaliullin G and Kim B J 2019 Annu. Rev. Condens. Matter. Phys.10 315 [10] Subramanian M A, Crawford M K, Harlow R L, Ami T, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Physica C235 743 [11] Nagai I, Yoshida Y, Ikeda S I, Matsuhata H, Kito H and Kosaka M 2007 J. Phys.: Condens. Matter19 136214 [12] Rau J G, Lee E K H and Kee H Y 2016 Annu. Rev. Condens. Matter. Phys.7 195 [13] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett.101 076402 [14] Wang Q, Cao Y, Waugh J A, Park S R, Qi T F, Korneta O B, Cao G and Dessau D S 2013 Phys. Rev. B87 245109 [15] Carter J M and Kee H Y 2013 Phys. Rev. B87 014433 [16] He J, Hafiz H, Mion T R, Hogan T, Dhital C, Chen X, Lin Q, Hashimoto M, Lu D H, Zhang Y, Markiewicz R S, Bansil A, Wilson S D and He R H 2015 Sci. Rep.5 8533 [17] de la Torre A, Hunter E C, Subedi A, McKeown Walker S, Tamai A, Kim T K, Hoesch M, Perry R S, Georges A and Baumberger F 2014 Phys. Rev. Lett.113 256402 [18] Hogan T, Dally R, Upton M, Clancy J P, Finkelstein K, Kim Y J, Graf M J and Wilson S D 2016 Phys. Rev. B94 100401 [19] Affeldt G, Hogan T, Denlinger J D, Vishwanath A, Wilson S D and Lanzara A 2018 Phys. Rev. B97 125111 [20] Brouet V, Serrier-Garcia L, Louat A, Fruchter L, Bertran F, Le Févre P, Rault J, Forget A and Colson D 2018 Phys. Rev. B98 235101 [21] Song S, Kim S, Ahn G H, Seo J H, Schmehr J L, Aling M, Wilson S D, Kim Y K and Moon S J 2018 Phys. Rev. B98 035110 [22] Schmehr J L, Mion T R, Porter Z, Aling M, Cao H, Upton M H, Islam Z, He R H, Sensarma R, Trivedi N and Wilson S D 2019 Phys. Rev. Lett.122 157201 [23] Dhital C, Hogan T, Zhou W, Chen X, Ren Z, Pokharel M, Okada Y, Heine M, Tian W, Yamani Z, Opeil C, Helton J S, Lynn J W, Wang Z, Madhavan V and Wilson S D 2014 Nat. Commun.5 3377 [24] Wang Z, Okada Y, O'Neal J, Zhou W, Walkup D, Dhital C, Hogan T, Clancy P, Kim Y J, Hu Y F, Santos L H, Wilson S D, Trivedi N and Madhavan V 2018 Proc. Natl. Acad. Sci. USA115 11198 [25] Ahn G, Schmehr J L, Porter Z, Wilson S D and Moon S J 2020 Sci. Rep.10 22340 [26] Cao Y, Wang Q, Waugh J A, Reber T J, Li H, Zhou X, Parham S, Park S R, Plumb N C, Rotenberg E, Bostwick A, Denlinger J D, Qi T, Hermele M A, Cao G and Dessau D S 2016 Nat. Commun.7 11367 [27] Sung N H, Gretarsson H, Proepper D, Porras J, Le Tacon M, Boris A V, Keimer B and Kim B J 2016 Philos. Mag.96 413 [28] Manna K, Aslan-Cansever G, Maljuk A, Wurmehl S, Seiro S and Büchner B 2020 J. Cryst. Growth540 125657 [29] Dhital C, Khadka S, Yamani Z, de la Cruz C, Hogan T C, Disseler S M, Pokharel M, Lukas K C, Tian W, Opeil C P, Wang Z and Wilson S D 2012 Phys. Rev. B86 100401 [30] Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T and Takagi H 2012 Phys. Rev. B86 174414 [31] Moreschini L, Moser S, Ebrahimi A, Dalla Piazza B, Kim K S, Boseggia S, McMorrow D F, Ronnow H M, Chang J, Prabhakaran D, Boothroyd A T, Rotenberg E, Bostwick A and Grioni M 2014 Phys. Rev. B89 201114 [32] Okada Y, Walkup D, Lin H, Dhital C, Chang T R, Khadka S, Zhou W, Jeng H T, Paranjape M, Bansil A, Wang Z, Wilson S D and Madhavan V 2013 Nat. Mater.12 707 [33] Park H J, Sohn C H, Jeong D W, Cao G, Kim K W, Moon S J, Jin H, Cho D Y and Noh T W 2014 Phys. Rev. B89 155115 [34] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X J 2008 Rev. Sci. Instrum.79 023105 [35] Chen S D, Hashimoto M, He Y, Song D, Xu K J, He J F, Devereaux T P, Eisaki H, Lu D H, Zaanen J and Shen Z X 2019 Science366 1099
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.