Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087106    DOI: 10.1088/1674-1056/acd5c3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Saturation thickness of stacked SiO2 in atomic-layer-deposited Al2O3 gate on 4H-SiC

Zewei Shao(邵泽伟)1,2,†, Hongyi Xu(徐弘毅)1,2,†, Hengyu Wang(王珩宇)1,‡, Na Ren(任娜)1,2, and Kuang Sheng(盛况)1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310063, China;
2. Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
Abstract  High-k materials as an alternative dielectric layer for SiC power devices have the potential to reduce interfacial state defects and improve MOS channel conduction capability. Besides, under identical conditions of gate oxide thickness and gate voltage, the high-k dielectric enables a greater charge accumulation in the channel region, resulting in a larger number of free electrons available for conduction. However, the lower energy band gap of high-k materials leads to significant leakage currents at the interface with SiC, which greatly affects device reliability. By inserting a layer of SiO2 between the high-k material and SiC, the interfacial barrier can be effectively widened and hence the leakage current will be reduced. In this study, the optimal thickness of the intercalated SiO2 was determined by investigating and analyzing the gate dielectric breakdown voltage and interfacial defects of a dielectric stack composed of atomic-layer-deposited Al2O3 layer and thermally nitride SiO2. Current-voltage and high-frequency capacitance-voltage measurements were performed on metal-oxide-semiconductor test structures with 35 nm thick Al2O3 stacked on 1 nm, 2 nm, 3 nm, 6 nm, or 9 nm thick nitride SiO2. Measurement results indicated that the current conducted through the oxides was affected by the thickness of the nitride oxide and the applied electric field. Finally, a saturation thickness of stacked SiO2 that contributed to dielectric breakdown and interfacial band offsets was identified. The findings in this paper provide a guideline for the SiC gate dielectric stack design with the breakdown strength and the interfacial state defects considered.
Keywords:  4H-SiC      SiO2/Al2O3 stacks      saturation thickness      dielectric breakdown  
Received:  25 February 2023      Revised:  11 May 2023      Accepted manuscript online: 
PACS:  71.55.Gs (II-VI semiconductors)  
  77.55.D-  
  68.55.jd (Thickness)  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
Fund: Project supported by the Key Area Research and Development Program of Guangdong Province of China (Grant No.2021B0101300005) and the National Key Research and Development Program of China (Grant No.2021YFB3401603).

Cite this article: 

Zewei Shao(邵泽伟), Hongyi Xu(徐弘毅), Hengyu Wang(王珩宇), Na Ren(任娜), and Kuang Sheng(盛况) Saturation thickness of stacked SiO2 in atomic-layer-deposited Al2O3 gate on 4H-SiC 2023 Chin. Phys. B 32 087106

[1] Karki U, Gonzalez-Santini N S and Peng F Z 2020 IEEE Trans. Electron Devices 67 2544
[2] She X, Huang A Q, Lucia O and Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193
[3] Liu J Q, Chung H J, Kuhr T, Li Q and Skowronski M 2002 Appl. Phys. Lett. 80 2111
[4] Spitz J, Melloch M R, Cooper J A and Capano M A 1998 IEEE Electron Device Lett. 19 100
[5] Ohshima T, Itoh H and Yoshikawa M 2001 J. Appl. Phys. 90 3038
[6] Naghibi J, Mohsenzade S, Mehran K and Foster M P 2022 IEEE Trans. Power Electron. 38 1079
[7] Runnion E, Gladstone S, Scott R, Dumin D, Lie L and Mitros J 1997 IEEE Trans. Electron Devices 44 993
[8] Dumin D J, Cooper J, Maddux J, Scott R and Wong D P 1994 J. Appl. Phys. 76 319
[9] Klein N and Gafni H 1966 IEEE Trans. Electron Devices ED-13 281
[10] Komiya K and Omura Y 2002 J. Appl. Phys. 92 2593
[11] Zhang Z, Wang Z, Guo Y and Robertson J 2021 Appl. Phys. Lett. 118 031601
[12] Siddiqui A, Khosa R Y and Usman M 2021 J. Mater. Chem. C 9 5055
[13] Yuan J, Yao S, Li W, Sylvestre A and Bai J 2017 J. Phys. Chem. C 121 12063
[14] Usman M, Arshad M, Suvanam S S and Hallén A 2018 J. Phys. D: Appl. Phys. 51 105111
[15] Usman M, Suvanam S S, Linnarsson M and Hallén A 2018 Mater. Sci. Semicond. Process. 81 118
[16] Jayawardhena I, Ramamurthy R, Morisette D, Ahyi A, Thorpe R, Kuroda M, Feldman L and Dhar S 2021 J. Appl. Phys. 129 075702
[17] Cheong K Y, Moon J H, Kim H J, Bahng W and Kim N K 2008 J. Appl. Phys. 103 084113
[18] Khosa R Y, Thorsteinsson E, Winters M, Rorsman N, Karhu R, Hassan J and Sveinbjörnsson E 2018 AIP Adv. 8 025304
[19] Lall P 1996 IEEE Trans. Reliab. 45 3
[20] Wolborski M, Bakowski M, Ortiz A, Pore V, Schöner A, Ritala M, Leskelä M and Hallén A 2006 Microelectron. Reliab. 46 743
[21] Kern W 1970 RCA Rev. 31 187
[22] Du M, Sun Y, Liu B, Chen B, Liao K, Ran R, Cai R, Zhou W and Shao Z 2021 Adv. Funct. Mater. 31 2101556
[23] Tanner C M, Perng Y C, Frewin C, Saddow S E and Chang J P 2007 Appl. Phys. Lett. 91 203510
[24] Agarwal A K, Seshadri S and Rowland L B 1997 IEEE Electron Device Lett. 18 592
[1] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[5] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[6] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[7] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[8] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[9] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[10] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[11] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[12] Ultra-high voltage 4H-SiC gate turn-off thyristor forlow switching time
Qing Liu(刘青), Hong-Bin Pu(蒲红斌), Xi Wang(王曦). Chin. Phys. B, 2019, 28(12): 127201.
[13] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[14] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[15] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
No Suggested Reading articles found!