|
|
Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell |
Jun He(何军)1,2,3, Dongliang Pei(裴栋梁)1, Jieying Wang(王杰英)1, Junmin Wang(王军民)1,2,3 |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Tai Yuan 030006, China;
2. Institute of Opto-Electronics, Shanxi University, Tai Yuan 030006, China;
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Tai Yuan 030006, China |
|
|
Abstract A velocity-selective spectroscopy technique for studying the spectra of Rydberg gases is presented. This method provides high-resolution spectrum measurements. We present experimental results for a ladder system 6S1/2→6P3/2→nS(D) electromagnetically-induced transparency involving highly-excited Rydberg states. Based on a radio-frequency modulation technique, we measure the hyperfine structure splitting of intermediate states and the fine structure splitting of Rydberg states in a room temperature 133Cs vapor cell. The experimental data and theoretical predictions show excellent agreement.
|
Received: 23 June 2017
Revised: 09 August 2017
Accepted manuscript online:
|
PACS:
|
32.80.Ee
|
(Rydberg states)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475091 and 61227902), the National Key Research and Development Program of China (Grant No. 2017YFA0304502), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2017101). |
Corresponding Authors:
Junmin Wang
E-mail: wwjjmm@sxu.edu.cn
|
Cite this article:
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民) Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell 2017 Chin. Phys. B 26 113202
|
[1] |
Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
|
[2] |
Dudin Y O and Kuzmich A 2012 Science 336 887
|
[3] |
Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletić V 2012 Nature 488 57
|
[4] |
Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001
|
[5] |
Saffman M, Walker T G and Moelmer K 2010 Rev. Mod. Phys. 82 2313
|
[6] |
Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
|
[7] |
Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
|
[8] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[9] |
Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
|
[10] |
Müller M, Lesanovsky I, Weimer H, Buchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
|
[11] |
Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M and Adams C S 2010 New J. Phys. 12 065015
|
[12] |
Barredo D, Kubler H, Daschner R, Löw R and Pfau T 2013 Phys. Rev. Lett. 110 123002
|
[13] |
Mack M, Karlewski F, Hattermann H, Höckh S, Jessen F, Cano D and Fortágh J 2011 Phys. Rev. A 83 052515
|
[14] |
Kübler H, Shaffer J P, Baluktsian T, Löw R and Pfau T 2010 Nat. Photon. 112 16
|
[15] |
Miller A, Anderson D A and Raithel G 2016 New J. Phys. 1 053017
|
[16] |
Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M and Jia S T 2016 Phys. Rev. A 94 023832
|
[17] |
Xu W and DeMarco B 2016 Phys. Rev. A 93 011801(R)
|
[18] |
Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T and Jia S T 2016 Phys. Rev. A 94 043822
|
[19] |
Tauschinsky A, Newell R, van Linden van den Heuvell H B and Preeuw R J C 2013 Phys. Rev. A 87 042522
|
[20] |
Hsu M T L, Hétet G, Glöckl O, Longdell J J, Buchler B C, Bachor H A and Lam P K 2006 Phys. Rev. Lett. 97 183601
|
[21] |
Black E D 2001 Am. J. Phys. 69 79
|
[22] |
Schwettmann A, Crawford J, Overstreet K R and Shafferet J P 2006 Phys. Rev. A 74 020701
|
[23] |
Kumar S, Fan H Q, Kübler H, Jahangiri A J and Shafferr J P 2017 Opt. Express 25 8625
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|