Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110301    DOI: 10.1088/1674-1056/25/11/110301
GENERAL Prev   Next  

Fractal dynamics in the ionization of helium Rydberg atoms

Xiulan Xu(徐秀兰)1, Yanhui Zhang(张延惠)1, Xiangji Cai(蔡祥吉)2, Guopeng Zhao(赵国鹏)1, Lisha Kang(康丽莎)1
1 College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 School of Physics, Shandong University, Jinan 250100, China
Abstract  

We study the ionization of helium Rydberg atoms in an electric field above the classical ionization threshold within the semiclassical theory. By introducing a fractal approach to describe the chaotic dynamical behavior of the ionization, we identify the fractal self-similarity structure of the escape time versus the distribution of the initial launch angles of electrons, and find that the self-similarity region shifts toward larger initial launch angles with a decrease in the scaled energy. We connect the fractal structure of the escape time plot to the escape dynamics of ionized electrons. Of particular note is that the fractal dimensions are sensitively controlled by the scaled energy and magnetic field, and exhibit excellent agreement with the chaotic extent of the ionization systems for both helium and hydrogen Rydberg atoms. It is shown that, besides the electric and magnetic fields, core scattering is a primary factor in the fractal dynamics.

Keywords:  self-similarity structure      ionization dynamics      fractal dimension      helium Rydberg atom  
Received:  06 June 2016      Revised:  28 June 2016      Accepted manuscript online: 
PACS:  03.65.Sq (Semiclassical theories and applications)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030).

Corresponding Authors:  Yanhui Zhang     E-mail:  yhzhang@sdnu.edu.cn

Cite this article: 

Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎) Fractal dynamics in the ionization of helium Rydberg atoms 2016 Chin. Phys. B 25 110301

[1] Lackner F, Březinová I, Burgdörfer J and Libisch F 2013 Phys. Rev. E 88 022916
[2] Yang B C, Delos J B and Du M L 2014 Phys. Rev. A 89 013417
[3] Engl T, Dujardin J, Argüelles A, Schlagheck P, Richter K and Urbina J D 2014 Phys. Rev. Lett. 112 140403
[4] Zhao G P, Zhang Y H, Cai X J, Xu X L and Kang L S 2016 Physica E 84 10
[5] Du M L 1989 Phys. Rev. A 40 4983
[6] Du M L and Delos J B 1988 Phys. Rev. A 38 1896
[7] Yang G C, Mao J M and Du M L 1999 Phys. Rev. A 59 2053
[8] Zhao L B and Delos J B 2010 Phys. Rev. A 81 053417
[9] Zhao L B and Delos J B 2010 Phys. Rev. A 81 053418
[10] Hüpper B, Main J and Wunner G 1996 Phys. Rev. A 53 744
[11] Lankhuijzen G M and Noordam L D 1996 Phys. Rev. Lett. 76 1784
[12] Zhou H, Li H Y, Gao S, Zhang Y H, Jia Z M and Lin S L 2008 Chin. Phys. B 17 4428
[13] Wang D H 2011 Chin. Phys. B 20 013403
[14] Blondel C, Delsart C and Dulieu F 1996 Phys. Rev. Lett. 77 3755
[15] Nicole C, Offerhaus H L, Vrakking M J J, Lépine F and Bordas C 2002 Phys. Rev. Lett. 88 133001
[16] Lépine F, Bordas C, Nicole C and Vrakking M J J 2004 Phys. Rev. A 70 033417
[17] Nicole C, Sluimer I, Rosca-Pruna F, Warntjes M, Vrakking M, Bordas C, Texier F and Robicheaux F 2000 Phys. Rev. Lett. 85 4024
[18] Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. A 70 043407
[19] Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. Lett. 92 073001
[20] Mitchell K A, Handley J P, Tighe B, Delos J B and Knudson S K 2003 Chaos 13 880
[21] Mitchell K A, Handley J P, Delos J B and Knudson S K 2003 Chaos 13 892
[22] Kotimäki V, Räsänen E, Hening H and Heller E J 2013 Phys. Rev. E 88 022913
[23] Mitchell K A and Steck D A 2007 Phys. Rev. A 76 031403R
[24] Peters A D, Jaffé C and Delos J B 1994 Phys. Rev. Lett. 73 2825
[25] Wang D H, Ding S L and Lin S L 2003 J. Phys. B 36 4225
[26] Song X H and Lin S L 2003 Acta Phys. Sin. 52 1611(in Chinese)
[27] Deng S H, Gao S, Li Y P, Xu X Y and Lin S L 2010 Chin. Phys. B 19 040511
[28] Hüpper B, Main J and Wunner G 1995 Phys. Rev. Lett. 74 2650
[29] Delande D, Taylor K T, Halley M H, Veldt T V D, Vassen W and Hogervorst W 1994 J. Phys. B 27 2771
[30] Delande D and Buchleitner A 1995 Chaos Solitons Fractals 5 1125
[31] Raithel G, Held H, Marmet L and Walther H 1994 J. Phys. B 27 2849
[32] Marcinek R and Delande D 2000 Phys. Rev. A 62 062704
[33] Delande D 1991 Phys. Scr. T34 52
[34] Ree S and Reichl L E 2002 Phys. Rev. E 65 055205R
[1] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[2] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[3] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[4] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[5] Biometric feature extraction using local fractal auto-correlation
Chen Xi (陈熙), Zhang Jia-Shu (张家树). Chin. Phys. B, 2014, 23(9): 096401.
[6] Tortuosity for streamlines in porous media
Kou Jian-Long(寇建龙), Tang Xue-Ming(唐学明), Zhang Hai-Yan(张海燕), Lu Hang-Jun(陆杭军), Wu Feng-Min(吴锋民), Xu You-Sheng(许友生), and Dong Yong-Sheng(董永胜) . Chin. Phys. B, 2012, 21(4): 044701.
[7] Universal critical properties of the Eulerian bond-cubic model
Ding Cheng-Xiang(丁成祥), Yao Gui-Yuan(姚桂元), Li Song(李崧), Deng You-Jin(邓友金), and Guo Wen-An(郭文安) . Chin. Phys. B, 2011, 20(7): 070504.
[8] Two-phase flow in correlated pore-throat random porous media
Tian Ju-Ping (田巨平), Yao Kai-Lun (姚凯伦). Chin. Phys. B, 2002, 11(4): 358-365.
No Suggested Reading articles found!