|
|
Fractal dynamics in the ionization of helium Rydberg atoms |
Xiulan Xu(徐秀兰)1, Yanhui Zhang(张延惠)1, Xiangji Cai(蔡祥吉)2, Guopeng Zhao(赵国鹏)1, Lisha Kang(康丽莎)1 |
1 College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract We study the ionization of helium Rydberg atoms in an electric field above the classical ionization threshold within the semiclassical theory. By introducing a fractal approach to describe the chaotic dynamical behavior of the ionization, we identify the fractal self-similarity structure of the escape time versus the distribution of the initial launch angles of electrons, and find that the self-similarity region shifts toward larger initial launch angles with a decrease in the scaled energy. We connect the fractal structure of the escape time plot to the escape dynamics of ionized electrons. Of particular note is that the fractal dimensions are sensitively controlled by the scaled energy and magnetic field, and exhibit excellent agreement with the chaotic extent of the ionization systems for both helium and hydrogen Rydberg atoms. It is shown that, besides the electric and magnetic fields, core scattering is a primary factor in the fractal dynamics.
|
Received: 06 June 2016
Revised: 28 June 2016
Accepted manuscript online:
|
PACS:
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
34.50.Fa
|
(Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030). |
Corresponding Authors:
Yanhui Zhang
E-mail: yhzhang@sdnu.edu.cn
|
Cite this article:
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎) Fractal dynamics in the ionization of helium Rydberg atoms 2016 Chin. Phys. B 25 110301
|
[1] |
Lackner F, Březinová I, Burgdörfer J and Libisch F 2013 Phys. Rev. E 88 022916
|
[2] |
Yang B C, Delos J B and Du M L 2014 Phys. Rev. A 89 013417
|
[3] |
Engl T, Dujardin J, Argüelles A, Schlagheck P, Richter K and Urbina J D 2014 Phys. Rev. Lett. 112 140403
|
[4] |
Zhao G P, Zhang Y H, Cai X J, Xu X L and Kang L S 2016 Physica E 84 10
|
[5] |
Du M L 1989 Phys. Rev. A 40 4983
|
[6] |
Du M L and Delos J B 1988 Phys. Rev. A 38 1896
|
[7] |
Yang G C, Mao J M and Du M L 1999 Phys. Rev. A 59 2053
|
[8] |
Zhao L B and Delos J B 2010 Phys. Rev. A 81 053417
|
[9] |
Zhao L B and Delos J B 2010 Phys. Rev. A 81 053418
|
[10] |
Hüpper B, Main J and Wunner G 1996 Phys. Rev. A 53 744
|
[11] |
Lankhuijzen G M and Noordam L D 1996 Phys. Rev. Lett. 76 1784
|
[12] |
Zhou H, Li H Y, Gao S, Zhang Y H, Jia Z M and Lin S L 2008 Chin. Phys. B 17 4428
|
[13] |
Wang D H 2011 Chin. Phys. B 20 013403
|
[14] |
Blondel C, Delsart C and Dulieu F 1996 Phys. Rev. Lett. 77 3755
|
[15] |
Nicole C, Offerhaus H L, Vrakking M J J, Lépine F and Bordas C 2002 Phys. Rev. Lett. 88 133001
|
[16] |
Lépine F, Bordas C, Nicole C and Vrakking M J J 2004 Phys. Rev. A 70 033417
|
[17] |
Nicole C, Sluimer I, Rosca-Pruna F, Warntjes M, Vrakking M, Bordas C, Texier F and Robicheaux F 2000 Phys. Rev. Lett. 85 4024
|
[18] |
Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. A 70 043407
|
[19] |
Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. Lett. 92 073001
|
[20] |
Mitchell K A, Handley J P, Tighe B, Delos J B and Knudson S K 2003 Chaos 13 880
|
[21] |
Mitchell K A, Handley J P, Delos J B and Knudson S K 2003 Chaos 13 892
|
[22] |
Kotimäki V, Räsänen E, Hening H and Heller E J 2013 Phys. Rev. E 88 022913
|
[23] |
Mitchell K A and Steck D A 2007 Phys. Rev. A 76 031403R
|
[24] |
Peters A D, Jaffé C and Delos J B 1994 Phys. Rev. Lett. 73 2825
|
[25] |
Wang D H, Ding S L and Lin S L 2003 J. Phys. B 36 4225
|
[26] |
Song X H and Lin S L 2003 Acta Phys. Sin. 52 1611(in Chinese)
|
[27] |
Deng S H, Gao S, Li Y P, Xu X Y and Lin S L 2010 Chin. Phys. B 19 040511
|
[28] |
Hüpper B, Main J and Wunner G 1995 Phys. Rev. Lett. 74 2650
|
[29] |
Delande D, Taylor K T, Halley M H, Veldt T V D, Vassen W and Hogervorst W 1994 J. Phys. B 27 2771
|
[30] |
Delande D and Buchleitner A 1995 Chaos Solitons Fractals 5 1125
|
[31] |
Raithel G, Held H, Marmet L and Walther H 1994 J. Phys. B 27 2849
|
[32] |
Marcinek R and Delande D 2000 Phys. Rev. A 62 062704
|
[33] |
Delande D 1991 Phys. Scr. T34 52
|
[34] |
Ree S and Reichl L E 2002 Phys. Rev. E 65 055205R
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|