Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊)1, Hang Zhang(张航)1, Yiwu Zhu(朱益武)1, Gaofeng Luo(罗高峰)1, Zhiyue Zuo(左峙岳)1,†, Xinchao Ruan(阮新朝)1,‡, and Ying Guo(郭迎)1,2,§
1 School of Automation, Central South University, Changsha 410083, China; 2 School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments. However, the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater. This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels. We propose a multi-scattering random channel model, which demonstrates characteristics of the excess noise in different propagation directions of communication links. Furthermore, we consider the fidelity of a continuous-variable quantum teleportation through seawater channel. To enhance transmission performance, non-Gaussian operations have been conducted. Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871407), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30878), and the Key Research and Development Program of Hunan Province, China (Grant Nos. 2020GK4063 and 2022GK2016).
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎) Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation 2023 Chin. Phys. B 32 100311
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett.70 1895 [2] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon.9 641 [3] Braunstein S L 1993 Phys. Rev. Lett.80 4 [4] Ralph T C and Lam P K 1998 Phys. Rev. Lett.81 5668 [5] Andersen U L and Ralph T C 2013 Phys. Rev. Lett.111 050504 [6] He H, Lou Y, Xu X, Liu S and Jing J 2023 Opt. Lett.48 1375 [7] Wen Z N, Yi Y G, Xu X W and Guo Y 2022 Quantum Inf. Process.21 1 [8] Liu S, Lou Y and Jing J 2020 Nat. Commun.11 3875 [9] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2018 Sci. Adv. 4 eaas9401 [10] Zuo Z Y, Wang Y J, Liao Q and Guo Y 2021 Phys. Rev. A104 022615 [11] Hu C Q, Yan Z Q, Gao J, Jiao Z Q, Li Z M, Shen W G, Chen Y, Ren R J, Qiao L F, Yang A L, Tang H and Jin X M 2019 Photon. Res. 7 A40 [12] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett.34 040302 [13] Yin J, Ren, J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z and Pan J W 2012 Nature488 185 [14] Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G and Jin X M 2017 Opt. Express25 19795 [15] Marcikic I, De Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature421 509 [16] Shi S P, Wang Y J, Tian L, Li W, Wu Y M, Wang Q W and Peng K C 2023 Laser Photon. Rev.17 2200508 [17] Zeng Z, Fu S, Zhang H, Dong Y and Cheng J 2017 IEEE Commun. Surv. Tut.19 204 [18] Prieur L and Sathyendranath S 1981 Limnol. Oceanogr.26 671 [19] Shi P, Zhao S C, Gu Y J and Li W D 2015 J. Opt. Soc. Am. A32 349 [20] Zuo Z Z, Wang Y J, Mao Y Y, Ruan X C and Guo Y 2021 Phys. Rev. A104 052613 [21] Gariano J and Djordjevic I B 2019 Opt. Express27 3055 [22] Zeng Z Q, Fu S, Zhang H H, Dong Y H and Cheng J L 2016 IEEE Commun. Surv. Tut.19 204 [23] Wu H, Liu X, Zhang H, Ruan X C and Guo Y 2022 Symmetry14 997 [24] Opatrn T, Kurizki G and Welsch D G 2000 Phys. Rev. A61 032302 [25] Chizhov A V, Knöll L and Welsch D G 2002 Phys. Rev. A65 022310 [26] Hanson F and Lasher M 2010 Appl. Opt.49 3224 [27] Cox W and Muth J 2014 J. Opt. Soc. Am. A31 920 [28] Bing Q, Wen Z, Li Q and Lo H K 2010 New J. Phys.12 103042 [29] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep.6 19201 [30] Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D and Zeng G H 2018 Phys. Rev. A97 052326 [31] Jaruwatanadilok S 2008 IEEE J. Sel. Areas Commun.26 1620 [32] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A99 032327 [33] Hu L Y, Al-amri M, Liao Z Y and Zubairy M S 2020 Phys. Rev. A102 012608 [34] Zhong H, Guo Y, Mao Y, Ye W and Huang D 2020 Sci. Rep.10 1 [35] Haltrin V I 1999 Appl. Opt.38 6826 [36] Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F and Ahmed S 2007 Opt. Express15 15702 [37] Uitz J, Claustre H, Morel A and Hooker S B 2006 J. Geophys. Res. - Oceans111 C08005 [38] Johnson L J, Green R J and Leeson M S 2013 Appl. Opt.52 7867 [39] Duntley S Q 1963 J. Opt. Soc. Am. A53 214 [40] Gabriel C, Khalighi M A, Bourennan S, Léon P and Rigaud V 2013 J. Opt. Commun. Netw.5 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.