Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120301    DOI: 10.1088/1674-1056/acf2ff
GENERAL Prev   Next  

Preparation of squeezed light with low average photon number based on dynamic Casimir effect

Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平)
Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  It is well known that squeezed states can be produced by nonlinear optical processes, such as parametric amplification and four wave mixing, in which two photons are created or annihilated simultaneously. Since the Hamiltonian of the dynamic Casimir effect contains a2 and a+2, photons in such a process are also generated or annihilated in pairs. Here we propose to get squeezed light through the dynamic Casimir effect. Specifically, we demonstrate it from the full quantum perspective and the semiclassical perspective successively. Different from previous work, we focus on generating squeezed states with the lowest average photon number, because such squeezed states have better quantum properties. For the full quantum picture, that is, phonons also have quantum properties, when the system is initially in the excited state of phonons, squeezed light cannot be generated during the evolution, but the light field can collapse to the squeezed state by measuring the state of phonons. When the phonon is treated as a classical quantity, that is, the cavity wall is continuously driven, squeezed light with the minimum average photon number will be generated in the case of off-resonance. This will play a positive role in better regulating the photon state generated by the dynamic Casimir system in the future.
Keywords:  cavity quantum electrodynamics      quantum optics      squeezed light  
Received:  10 May 2023      Revised:  02 August 2023      Accepted manuscript online:  23 August 2023
PACS:  03.65.-w (Quantum mechanics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.-p (Quantum optics)  
  42.50.-p (Quantum optics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12174288, 12274326, and 12204352) and the National Key R&D Program of China (Grant No.2021YFA1400602).
Corresponding Authors:  Jing-Ping Xu, Ya-Ping Yang     E-mail:  xx_jj_pp@tongji.edu.cn;yang_yaping@tongji.edu.cn

Cite this article: 

Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平) Preparation of squeezed light with low average photon number based on dynamic Casimir effect 2023 Chin. Phys. B 32 120301

[1] Walls D F 1983 Nature 306 141
[2] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[3] Loudon R 1987 J. Mod. Opt. 34 709
[4] Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D and Peng K C 2012 Opt. Lett. 37 5178
[5] Zhao Y P, Hao S H, Su X L and Xie C D 2012 Acta Opt. Sin. 32 0627002 (in Chinese)
[6] Slavi'k R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Nielsen L G, Jakobsen D, Herstrom S, Phelan R, O'Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P and Richardson D J 2010 Nat. Photon. 4 690
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[8] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[9] Aasi J, Abadie J, Abbott B P, et al. 2013 Nat. Photon. 7 613
[10] Sun H X, Liu Z L, Liu K, Yang R G, Zhang J X and Gao J R 2014 Chin. Phys. Lett. 31 084202
[11] Wang H, Zhang Y, Pan Q, Su H, Porzio A, Xie C D and Peng K C 1999 Phys. Rev. Lett. 82 1414
[12] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[13] Wu L A, Kimble H J, Hall J L and Wu H F 1986 Phys. Rev. Lett 57 2520
[14] Suzuki S, Yonezawa H, Kannari F, Sasaki M and Furusawa A 2006 Appl. Phys. Lett. 89 061116
[15] Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Ebhardt H M and Schnabel R 2010 Phys. Rev. Lett. 104 251102
[16] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H and Schnabe R 2011 Opt. Express 19 25763
[17] TSerikawa T, Yoshikawa J I, Makino K and Frusawa A 2016 Opt. Express 24 28383
[18] Zuo G H, Yang C, Zhao J X, Tian Z Z and Zhang T C 2020 Acta Phys. Sin. 69 014207 (in Chinese)
[19] Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F and Zhang T C 2017 Chin. Phys. B 26 124206
[20] Casimir H B G 1948 Proc. Kon. Ned. Akad. Wet. B 793 51
[21] Milonni P W 1994 The Quantum Vacuum (Boston: Academic Press)
[22] Milonni P W 2003 Phys. Today 56 49
[23] Bordag, M, Klimchitskaya G L, Mohideen U and Mostepanenko V M 2009 Advances in the Casimir Effect (New York: Oxford University Press) p. 145
[24] Schwinger J 1951 Phys. Rev. 82 664
[25] Fulling S A and Davies P C W 1976 Proc. R. Soc. A 348 393
[26] Yablonovitch E 1989 Phys. Rev. Lett. 62 1742
[27] Schwinger J 1993 Proc. Natl. Acad. Sci. USA 90 2105
[28] Moore G T 1970 J. Math. Phys. 11 2679
[29] Braggio C, Bressi G, Carugno G, Noce C D, Galeazzi G, Lombardi A, Palmieri A, Ruoso G and Zanello D 2005 Europhys. Lett. 70 754
[30] Johansson J R, Johansson G, Wilson C M and Nori F 2009 Phys. Rev. Lett. 103 147003
[31] Wilson C M, Duty T, Sandberg M, Persson F, Shumeiko V and Delsing P 2010 Phys. Rev. Lett. 105 233907
[32] Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F and Delsing P 2011 Nature 479 376
[33] Lähteenmäki P, Paraoanu G S, Hassel J and Hakonen P J 2013 Proc. Natl. Acad. Sci. USA 110 4234
[34] Lambrecht A, Jaekel M T and Reynaud S 1996 Phys. Rev. Lett. 77 615
[35] Ancheyta R R, Prieto I R, Leija A P, Busch K and Montiel R J L 2017 Phys. Rev. A 96 032501
[36] Macrí V, Ridolfo A, Stefano O D, Kockum A F, Nori F and Savasta S 2018 Phys. Rev. X 8 011031
[37] Dodonov V V and Klimov A B 1996 Phys. Rev. A 53 2664
[38] Dodonov V 1995 Phys. Lett. A 207 126
[39] Qiao H, Dumur É, Andersson G, Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Povey R G, Wu X and Cleland A N 2023 Science 380 6649
[1] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[2] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[3] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[4] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[5] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[6] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[7] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[8] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[9] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[10] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[11] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[12] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[13] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[14] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[15] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
No Suggested Reading articles found!