|
|
Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame |
Huan Yang(杨欢)1,†, Ling-Ling Xing(邢玲玲)1, Ming-Ming Du(杜明明)2, Min Kong(孔敏)1, Gang Zhang(张刚)1,‡, and Liu Ye(叶柳)3 |
1 School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China; 2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 3 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230039, China |
|
|
Abstract A quantum steering ellipsoid (QSE) is a visual characterization for bipartite qubit systems, and it is also a novel avenue for describing and detecting quantum correlations. Herein, by using a QSE, we visualize and witness the first-order coherence (FOC), Bell nonlocality (BN) and purity under non-inertial frames. Also, the collective influences of the depolarizing channel and the non-coherence-generating channel (NCGC) on the FOC, BN and purity are investigated in the QSE formalism. The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system, the lengths of the QSE semiaxis visualize the BN, and the QSE's shape and position dominate the purity of the system. One can capture the FOC, BN and purity via the shape and position of the QSE in the non-inertial frame. The depolarizing channel (the NCGC) gives rise to the shrinking and degradation (the periodical oscillation) of the QSE. One can use these traits to visually characterize and detect the FOC, BN and purity under the influence of external noise. Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC. The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.
|
Received: 08 November 2022
Revised: 17 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No. KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University (Grant No. WGKQ2021048), an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes (Grant No. FMDI202106), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2021-026) and the Anhui Provincial Natural Science Foundation (Grant Nos. 2108085MA18 and 2008085MA20). |
Corresponding Authors:
Huan Yang, Gang Zhang
E-mail: hyang@wxc.edu.cn;zhanggang@wxc.edu.cn
|
Cite this article:
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明), Min Kong(孔敏), Gang Zhang(张刚), and Liu Ye(叶柳) Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame 2023 Chin. Phys. B 32 100305
|
[1] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003 [2] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Rev. Mod. Phys. 762-764 1 [3] Demkowicz-Dobrzanski R and Maccone L 2014 Phys. Rev. Lett. 113 250801 [4] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689 [5] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383 [6] Ćwikliński P, Studziński M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403 [7] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885 [8] Glauber R J 1963 Phys. Rev. 130 2529 [9] Glauber R J 1963 Phys. Rev. 131 2766 [10] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) [11] Ding Z Y, Zhou P F, Fan X G, Liu C C, He J and Ye L 2022 Chin. Phys. B 31 060308 [12] Yang L W and Xia Y J 2021 Chin. Phys. B 30 120304 [13] Svozilík J, Vallés A, Peřina J and Torres J P 2015 Phys. Rev. Lett. 115 220501 [14] Kalaga J K, Leoński W and Peřina Jr J 2018 Phys. Rev. A 97 042110 [15] Sun W Y, Wang D, Fang B L, Ding Z Y, Yang H, Ming F and Ye L 2019 Ann. Phys. (Berlin) 531 1800358 [16] Du M M and Tong D M 2021 Phys. Rev. A 103 032407 [17] Ding Z Y, Zhou P F, Liu J X, Liu C C, Zhao M, Yang H, Fan X G, He J and Ye L 2021 Opt. Express A 29 40668 [18] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302(R) [19] Zhang D J, Liu C L, Yu X D and Tong D M 2018 Phys. Rev. Lett. 120 170501 [20] Du M M, Khan A S, Zhou Z Y and Zhang D J 2022 Sci. China Phys. Mech. Astron. 65 100311 [21] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [22] Pironio S, Acín A, Massar S, Boyer de la Giroday A, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A and Monroe C 2010 Nature 464 1021 [23] Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503 [24] Gallego R, Masanes L, De La Torre G, Dhara C, Aolita L and Acín A 2013 Nat. Commun. 4 2654 [25] Chen J L, Deng D L, Su H Y, Wu C F and Oh C H 2011 Phys. Rev. A 83 022316 [26] Su H Y, Wu Y C, Chen J L, Wu C F and Kwek L C 2013 Phys. Rev. A 88 022124 [27] Luo W, Geng H, Xing D Y, Blatter G and Chen W 2022 Phys. Rev. Lett. 129 120507 [28] Gong W, Parida G, Tu Z and Venugopalan R 2022 Phys. Rev. D 106 L031501 [29] Sun Z Y, Wen H X, Li M and Li Y 2021 Phys. Rev. A 104 052202 [30] Bell J S 1964 Physics (N.Y.) 1 195 [31] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [32] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [33] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [34] Yang H, Zhao F, Fan X G, Ding Z Y, Wang D, Song X K, Yuan H, Zhang C J and Ye L 2021 Opt. Express A 29 26822 [35] Werner R F 1989 Phys. Rev. A 40 4277 [36] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340 [37] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [38] Jevtic S, Pusey M, Jennings D and Rudolph T 2014 Phys. Rev. Lett. 113 020402 [39] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [40] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 [41] Milne A, Jevtic S, Jennings D, Wiseman H and Rudolph T 2014 New J. Phys. 16 083017 [42] Hu X Y, Milne A, Zhang B Y and Fan H 2016 Sci. Rep. 6 19365 [43] Yang H, Du M M, Sun W Y, Ding Z Y, Wang D, Zhang C J and Ye L 2018 Laser Phys. Lett. A 15 125201 [44] Yang H, Ding Z Y, Sun W Y, Ming F, Fan X G, Wang D, Zhang C J and Ye L 2019 Quantum Inf. Process. 18 299 [45] Hu X Y and Fan H 2015 Phys. Rev. A 91 022301 [46] Shi M J, Jiang F J, Sun C X and Du J F 2011 New J. Phys. 13 073016 [47] Shi M J, Sun C X, Jiang F J, Yan X H and Du J F 2012 Phys. Rev. A 85 064104 [48] Milne A, Jennings D, Jevtic S and Rudolph T 2014 Phys. Rev. A 90 024302 [49] Nguyen H C and Vu T 2016 Phys. Rev. A 94 012114 [50] Jevtic S, Hall M J W, Anderson M R, Zwierz M and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40 [51] Quan Q, Zhu H J, Liu S Y, Fei S M, Fan H and Yang W L 2016 Sci. Rep. 6 22025 [52] Nguyen H C and Vu T 2016 Europhys. Lett. 115 10003 [53] McCloskey R, Ferraro A and Paternostro M 2017 Phys. Rev. A 95 012320 [54] Caban P, Rembielinski J, Smolinski K A and Walczak Z 2017 Quantum Inf. Process. 16 178 [55] Zhang C, Cheng S M, Li L, Liang Q Y, Liu B H, Huang Y F, Li C F, Guo G C, Hall M J W, Wiseman H M and Pryde G J 2019 Phys. Rev. Lett. 122 070402 [56] Cheng S, Milne A, Hall M J W and Wiseman H M 2016 Phys. Rev. A 94 042105 [57] Du M M, Zhang D J, Zhou Z Y and Tong D M 2021 Phys. Rev. A 104 012418 [58] Alsing P M and Fuentes I 2012 Class. Quantum Grav. 29 224001 [59] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121 [60] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93 [61] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer) [62] Hawking S W 1976 Phys. Rev. D 14 2460 [63] Bombelli L, Koul R K, Lee J and Sorkin R D 1986 Phys. Rev. D 34 373 [64] Hawking S W 1975 Commun. Math. Phys. 43 199 [65] Terashima H 2000 Phys. Rev. D 61 104016 [66] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A 98 022320 [67] Xiao X, Xie Y M, Yao Y, Li Y L and Wang J C 2018 Ann. Phys. (Berlin) 390 83 [68] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A 98 022320 [69] Chowdhury C, Das S, Dalui S and Majhi B R 2019 Phys. Rev. D 99 045021 [70] Chen X and Chan K W C 2019 Phys. Rev. A 99 022334 [71] Liao X P, Wen W, Rong M S and Fang M F 2020 Quantum Inf. Process. 19 106 [72] Dong Q, Santana Carrillo R, Sun G H and Dong S H 2022 Chin. Phys. B 31 030303 [73] Torres-Arenas A J, López-Zúñiga E O, Antonio Saldaña-Herrera J, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301 [74] Zeng H S and Cao H M 2021 Ann. Phys. (Berlin) 533 2000606 [75] Friis N, Köhler P, Martín-Martínez E and Bertlmann R A 2011 Phys. Rev. A 84 062111 [76] Smith A and Mann R B 2012 Phys. Rev. A 86 012306 [77] Tian Z, Wang J and Jing J 2013 Ann. Phys. -New York 332 98 [78] Tian Z and Jing J 2013 Ann. Phys. -New York 333 76 [79] Tian Z and Jing J 2012 Phys. Lett. B 707 264 [80] Wang J and Jing J 2010 Phys. Rev. A 82 032324 [81] Aminjavaheri M H, Ghorashi S A A and Bagheri Harouni M 2014 Quantum Inf. Process. 13 1483 [82] Zhang R J, Xu S, Song X K, Shi J D and Ye L 2014 Mod. Phys. Lett. B 28 1450168 [83] Ramzan M 2013 Quantum Inf. Process. 12 2721 [84] Ramzan M and Khan M K 2012 Quantum Inf. Process. 11 443 [85] Ramzan M 2012 Chin. Phys. Lett. 29 020302 [86] Wang J and Jing J 2012 Ann. Phys. -New York 327 283 [87] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326 [88] Hu X 2016 Phys. Rev. A 94 012326 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|