Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100305    DOI: 10.1088/1674-1056/acb762
GENERAL Prev   Next  

Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

Huan Yang(杨欢)1,†, Ling-Ling Xing(邢玲玲)1, Ming-Ming Du(杜明明)2, Min Kong(孔敏)1, Gang Zhang(张刚)1,‡, and Liu Ye(叶柳)3
1 School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230039, China
Abstract  A quantum steering ellipsoid (QSE) is a visual characterization for bipartite qubit systems, and it is also a novel avenue for describing and detecting quantum correlations. Herein, by using a QSE, we visualize and witness the first-order coherence (FOC), Bell nonlocality (BN) and purity under non-inertial frames. Also, the collective influences of the depolarizing channel and the non-coherence-generating channel (NCGC) on the FOC, BN and purity are investigated in the QSE formalism. The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system, the lengths of the QSE semiaxis visualize the BN, and the QSE's shape and position dominate the purity of the system. One can capture the FOC, BN and purity via the shape and position of the QSE in the non-inertial frame. The depolarizing channel (the NCGC) gives rise to the shrinking and degradation (the periodical oscillation) of the QSE. One can use these traits to visually characterize and detect the FOC, BN and purity under the influence of external noise. Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC. The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.
Keywords:  quantum steering ellipsoid      first-order coherence      Bell-nonlocality      purity  
Received:  08 November 2022      Revised:  17 January 2023      Accepted manuscript online:  31 January 2023
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No. KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University (Grant No. WGKQ2021048), an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes (Grant No. FMDI202106), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2021-026) and the Anhui Provincial Natural Science Foundation (Grant Nos. 2108085MA18 and 2008085MA20).
Corresponding Authors:  Huan Yang, Gang Zhang     E-mail:  hyang@wxc.edu.cn;zhanggang@wxc.edu.cn

Cite this article: 

Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明), Min Kong(孔敏), Gang Zhang(张刚), and Liu Ye(叶柳) Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame 2023 Chin. Phys. B 32 100305

[1] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[2] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Rev. Mod. Phys. 762-764 1
[3] Demkowicz-Dobrzanski R and Maccone L 2014 Phys. Rev. Lett. 113 250801
[4] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
[5] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[6] Ćwikliński P, Studziński M, Horodecki M and Oppenheim J 2015 Phys. Rev. Lett. 115 210403
[7] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[8] Glauber R J 1963 Phys. Rev. 130 2529
[9] Glauber R J 1963 Phys. Rev. 131 2766
[10] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[11] Ding Z Y, Zhou P F, Fan X G, Liu C C, He J and Ye L 2022 Chin. Phys. B 31 060308
[12] Yang L W and Xia Y J 2021 Chin. Phys. B 30 120304
[13] Svozilík J, Vallés A, Peřina J and Torres J P 2015 Phys. Rev. Lett. 115 220501
[14] Kalaga J K, Leoński W and Peřina Jr J 2018 Phys. Rev. A 97 042110
[15] Sun W Y, Wang D, Fang B L, Ding Z Y, Yang H, Ming F and Ye L 2019 Ann. Phys. (Berlin) 531 1800358
[16] Du M M and Tong D M 2021 Phys. Rev. A 103 032407
[17] Ding Z Y, Zhou P F, Liu J X, Liu C C, Zhao M, Yang H, Fan X G, He J and Ye L 2021 Opt. Express A 29 40668
[18] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302(R)
[19] Zhang D J, Liu C L, Yu X D and Tong D M 2018 Phys. Rev. Lett. 120 170501
[20] Du M M, Khan A S, Zhou Z Y and Zhang D J 2022 Sci. China Phys. Mech. Astron. 65 100311
[21] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[22] Pironio S, Acín A, Massar S, Boyer de la Giroday A, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A and Monroe C 2010 Nature 464 1021
[23] Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503
[24] Gallego R, Masanes L, De La Torre G, Dhara C, Aolita L and Acín A 2013 Nat. Commun. 4 2654
[25] Chen J L, Deng D L, Su H Y, Wu C F and Oh C H 2011 Phys. Rev. A 83 022316
[26] Su H Y, Wu Y C, Chen J L, Wu C F and Kwek L C 2013 Phys. Rev. A 88 022124
[27] Luo W, Geng H, Xing D Y, Blatter G and Chen W 2022 Phys. Rev. Lett. 129 120507
[28] Gong W, Parida G, Tu Z and Venugopalan R 2022 Phys. Rev. D 106 L031501
[29] Sun Z Y, Wen H X, Li M and Li Y 2021 Phys. Rev. A 104 052202
[30] Bell J S 1964 Physics (N.Y.) 1 195
[31] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[32] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[33] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[34] Yang H, Zhao F, Fan X G, Ding Z Y, Wang D, Song X K, Yuan H, Zhang C J and Ye L 2021 Opt. Express A 29 26822
[35] Werner R F 1989 Phys. Rev. A 40 4277
[36] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340
[37] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[38] Jevtic S, Pusey M, Jennings D and Rudolph T 2014 Phys. Rev. Lett. 113 020402
[39] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[40] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[41] Milne A, Jevtic S, Jennings D, Wiseman H and Rudolph T 2014 New J. Phys. 16 083017
[42] Hu X Y, Milne A, Zhang B Y and Fan H 2016 Sci. Rep. 6 19365
[43] Yang H, Du M M, Sun W Y, Ding Z Y, Wang D, Zhang C J and Ye L 2018 Laser Phys. Lett. A 15 125201
[44] Yang H, Ding Z Y, Sun W Y, Ming F, Fan X G, Wang D, Zhang C J and Ye L 2019 Quantum Inf. Process. 18 299
[45] Hu X Y and Fan H 2015 Phys. Rev. A 91 022301
[46] Shi M J, Jiang F J, Sun C X and Du J F 2011 New J. Phys. 13 073016
[47] Shi M J, Sun C X, Jiang F J, Yan X H and Du J F 2012 Phys. Rev. A 85 064104
[48] Milne A, Jennings D, Jevtic S and Rudolph T 2014 Phys. Rev. A 90 024302
[49] Nguyen H C and Vu T 2016 Phys. Rev. A 94 012114
[50] Jevtic S, Hall M J W, Anderson M R, Zwierz M and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40
[51] Quan Q, Zhu H J, Liu S Y, Fei S M, Fan H and Yang W L 2016 Sci. Rep. 6 22025
[52] Nguyen H C and Vu T 2016 Europhys. Lett. 115 10003
[53] McCloskey R, Ferraro A and Paternostro M 2017 Phys. Rev. A 95 012320
[54] Caban P, Rembielinski J, Smolinski K A and Walczak Z 2017 Quantum Inf. Process. 16 178
[55] Zhang C, Cheng S M, Li L, Liang Q Y, Liu B H, Huang Y F, Li C F, Guo G C, Hall M J W, Wiseman H M and Pryde G J 2019 Phys. Rev. Lett. 122 070402
[56] Cheng S, Milne A, Hall M J W and Wiseman H M 2016 Phys. Rev. A 94 042105
[57] Du M M, Zhang D J, Zhou Z Y and Tong D M 2021 Phys. Rev. A 104 012418
[58] Alsing P M and Fuentes I 2012 Class. Quantum Grav. 29 224001
[59] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[60] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93
[61] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[62] Hawking S W 1976 Phys. Rev. D 14 2460
[63] Bombelli L, Koul R K, Lee J and Sorkin R D 1986 Phys. Rev. D 34 373
[64] Hawking S W 1975 Commun. Math. Phys. 43 199
[65] Terashima H 2000 Phys. Rev. D 61 104016
[66] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A 98 022320
[67] Xiao X, Xie Y M, Yao Y, Li Y L and Wang J C 2018 Ann. Phys. (Berlin) 390 83
[68] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A 98 022320
[69] Chowdhury C, Das S, Dalui S and Majhi B R 2019 Phys. Rev. D 99 045021
[70] Chen X and Chan K W C 2019 Phys. Rev. A 99 022334
[71] Liao X P, Wen W, Rong M S and Fang M F 2020 Quantum Inf. Process. 19 106
[72] Dong Q, Santana Carrillo R, Sun G H and Dong S H 2022 Chin. Phys. B 31 030303
[73] Torres-Arenas A J, López-Zúñiga E O, Antonio Saldaña-Herrera J, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301
[74] Zeng H S and Cao H M 2021 Ann. Phys. (Berlin) 533 2000606
[75] Friis N, Köhler P, Martín-Martínez E and Bertlmann R A 2011 Phys. Rev. A 84 062111
[76] Smith A and Mann R B 2012 Phys. Rev. A 86 012306
[77] Tian Z, Wang J and Jing J 2013 Ann. Phys. -New York 332 98
[78] Tian Z and Jing J 2013 Ann. Phys. -New York 333 76
[79] Tian Z and Jing J 2012 Phys. Lett. B 707 264
[80] Wang J and Jing J 2010 Phys. Rev. A 82 032324
[81] Aminjavaheri M H, Ghorashi S A A and Bagheri Harouni M 2014 Quantum Inf. Process. 13 1483
[82] Zhang R J, Xu S, Song X K, Shi J D and Ye L 2014 Mod. Phys. Lett. B 28 1450168
[83] Ramzan M 2013 Quantum Inf. Process. 12 2721
[84] Ramzan M and Khan M K 2012 Quantum Inf. Process. 11 443
[85] Ramzan M 2012 Chin. Phys. Lett. 29 020302
[86] Wang J and Jing J 2012 Ann. Phys. -New York 327 283
[87] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326
[88] Hu X 2016 Phys. Rev. A 94 012326
[1] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[2] Quasi-one-dimensional characters in topological semimetal TaNiTe5
Ni Ma(马妮), De-Yang Wang(王德阳), Ben-Rui Huang(黄本锐), Kai-Yi Li(李凯仪), Jing-Peng Song(宋靖鹏), Jian-Zhong Liu(刘建忠), Hong-Ping Mei(梅红萍), Mao Ye(叶茂), and Ang Li(李昂). Chin. Phys. B, 2023, 32(5): 056801.
[3] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[6] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[7] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[8] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[9] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[10] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[13] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[14] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[15] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
No Suggested Reading articles found!