Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044601    DOI: 10.1088/1674-1056/acb41d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles

Dunwei Peng(彭敦维)1,2, Yunpeng Zhang(张云鹏)1, Xiaolin Tian(田晓林)2, Hua Hou(侯华)2,3, and Yuhong Zhao(赵宇宏)4,2,†
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
4 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method. Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode, microscopic morphology, the free energy, crack area change, and causing fracture failure. Crack propagation mode depends on the dislocation activity near the crack tip. Brittle propagation of the crack occurs due to dislocation always at crack tip. Dislocation is emitted at the front end of the crack tip and plastic deformation occurs, which belongs to ductile propagation. The orientation angles of 9° and 14° are brittle-ductile mixed propagation, while the orientation angles of 19° and 30° are brittle propagation and no dislocation is formed under dynamic tension. The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is 14° under static tension, and the crack would be ductile propagation. While the orientation angle is 19° and 30°, the crack propagates in a certain direction, which is a kind of brittle propagation. This work has some practical significance in preventing material fracture failure and improving material performance.
Keywords:  phase-field-crystal      microcrack      orientation angle      crack propagation  
Received:  31 August 2022      Revised:  20 December 2022      Accepted manuscript online:  18 January 2023
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  61.72.Bb (Theories and models of crystal defects)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52074246).
Corresponding Authors:  Yuhong Zhao     E-mail:  zhaoyuhong@nuc.edu.cn

Cite this article: 

Dunwei Peng(彭敦维), Yunpeng Zhang(张云鹏), Xiaolin Tian(田晓林), Hua Hou(侯华), and Yuhong Zhao(赵宇宏) Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles 2023 Chin. Phys. B 32 044601

[1] Buehler M J, Abraham F F and Gao H J 2003 Nature 426 141
[2] Pineau A, Benzerga A A and Pardoen T 2016 Acta Mater. 107 424
[3] Kou M M, Lian Y J and Wang Y T 2019 Eng. Fract. Mech. 212 41
[4] Shibanuma K, Hosoe T, Yamaguchi H, Tsukamoto M, Suzuki K and Aihara S 2018 Eng. Fract. Mech. 204 434
[5] Liu G T and Yang L Y 2017 Chin. Phys. B 26 094601
[6] Jiang L J and Liu G T 2017 Chin. Phys. B 26 044601
[7] Guo H J, Liu Y H, Su Y N, Zhang Q L and Zhan G D 2020 Chin. Phys. B 29 104602
[8] Guo L Y, Chen Z, Long J and Yang T 2015 Acta Phys. Sin. 64 178102 (in Chinese)
[9] Liang J J, Gao N and Li Y H 2020 Acta Phys. Sin. 69 116102 (in Chinese)
[10] Zheng Z Q, Cai B, Zhai T and Li S C 2011 Mater. Sci. Eng. A-Struct. 528 2017
[11] Gope P C and Thakur A 2011 Fatigue Fract. Eng. M 34 804
[12] Tanaka M, Tarleton E and Roberts S G 2008 Acta Mater. 56 5123
[13] Decelis B, Argon A S and Yip S 1983 J. Appl. Phys. 54 4864
[14] Zhang Y W, Wang T C and Tang Q H 1995 Scripta Metal. Mater. 33 267
[15] Cao A J and Wei Y G 2007 Phys. Rev. B 76 024113
[16] Tian X L, Zhao Y H, Peng D W, Guo Q W, Guo Z and Hou H 2021 T. Nonferr. Metal. Soc. 31 1175
[17] Zhao Y H, Zhang B, Hou H, Chen W P and Wang M 2019 J. Mater. Sci. Technol. 35 1044
[18] Chen W P, Zhao Y H, Yang S, Zhang D and Hou H 2021 Adv. Compos. Hybrid Ma. 4 371
[19] Jing H X, Xing H, Dong X L and Han Y S 2022 J. Electrochem. Soc. 169 032511
[20] Xing H, Dong X L, Sun D K and Han Y S 2020 J. Mater. Sci. Technol. 57 26
[21] Qi K W, Zhao Y H, Guo H J, Tian X L and Hou H 2019 Acta Phys. Sin. 68 170504 (in Chinese)
[22] Yamanaka A, Mcreynolds K and Voorhees P W 2017 Acta Mater. 133 160
[23] Qi K W, Zhao Y H, Tian X L, Peng D W, Sun Y Y and Hou H 2020 Acta Phys. Sin. 69 140504 (in Chinese)
[24] Guo H J, Zhao Y Y, Sun Y Y, Tian J Z, Hou H, Qi K W and Tian X L 2019 Superlattice. Microst. 129 163
[25] Lu Y J, Gao Y J, Deng Q Q, Liu Z Y, Li Y X, Huang Z J and Luo Z R 2019 Eur. Phys. J. B 92 1
[26] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K J, Li X Y, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039
[27] Zhao Y H, Jing J H, Chen L W, Xu F H and Hou H 2021 Acta Metall. Sin. 57 1107
[28] Elder K R and Grant M 2004 Phys. Rev. E 70 051605
[29] Gomez H and Nogueira X 2012 Comput. Method. Appl. M 249-252 52
[30] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504
[31] Gao Y J, Luo Z R, Huang L L and Lin K 2013 Chin. J. Nonferus. Met. 23 1892
[32] Huang L L, Gao Y J, Deng Q Q, Liu Z Y, Luo Z R, Li Y X and Huang Z J 2020 Comput. Mater. Sci. 173 109413
[33] Liu Z Y, Gao Y J, Deng Q Q, Li Y X, Huang Z J, Liao K and Luo Z R 2020 Comput. Mater. Sci. 179 109640
[34] Gao Y J, Deng Q Q, Huang L L, Ye L, Wen Z C and Luo Z R 2017 Comput. Mater. Sci. 130 64
[35] Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G and Lin K 2016 Model. Simul. Mater. Sci. 24 055010
[36] Hu S, Chen Z, Peng Y Y, Liu Y J and Guo L Y 2016 Comput. Mater. Sci. 121 143
[37] Hu S and Wang S 2019 Physica B 552 104
[38] Hu S 2020 Fatigue Fract. Eng. M 43 63
[39] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701
[40] Swift J and Hohenberg P C 1977 Phys. Rev. A 15 319
[41] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107
[42] Cheng M and Warren J A 2008 J. Comput. Phys. 227 6241
[43] Morozov N F, Ovid'Ko L A, Sheinerman A G and Aifantis E C 2010 J. Mech. Phys. Solids 58 1088
[44] Berry J, Elder K R and Grant M 2008 Phys. Rev. B 77 224114
[45] Rountree C L, Kalia R K, Lidorikis E, Nakano A and Vashishta P 2002 Ann. Rev. Mater. Res. 32 377
[46] Wu W P and Yao Z Z 2014 Strength Mater. 46 164
[47] Wu W P and Yao Z Z 2012 Theor. Appl. Fract. Mec. 62 67
[48] Rice J R and Thomson R 1974 Philos. Mag. 29 73
[49] Huang M X and Li Z H 2004 J. Mech. Phys. Solids 52 1991
[50] Saka H and Agata Y 2003 Mater. Sci. Eng. A-Struct. 350 57
[51] Cao L X and Wang C Y 2006 Chin. Phys. B 15 2092
[52] Tvergaard V and Hutchinson J W 2002 Int. J. Solids Struct. 39 3581
[53] Li X D, Wang Y B, Chu W Y, Wang C and Bai C L 1998 Sci. China Ser. E 41 411
[54] Zhu T, Li J and Yip S 2004 Phys. Rev. Lett. 93 025503
[1] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[2] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[3] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[4] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
[5] Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model
Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(3): 038103.
[6] Real-time quantitative optical method to study temperature dependence of crack propagation process in colloidal photonic crystal film
Lin Dong-Feng (林冬风), Xu Yu-Zhuan (徐余颛), Shi Jiang-Jian (石将建), Zhang Yu (张瑜), Luo Yan-Hong (罗艳红), Li Dong-Mei (李冬梅), Meng Qing-Bo (孟庆波). Chin. Phys. B, 2015, 24(7): 077803.
[7] Phonon spectrum and related thermodynamic properties of microcrack in bcc-Fe
Cao Li-Xia(曹莉霞) and Wang Chong-Yu(王崇愚). Chin. Phys. B, 2006, 15(9): 2092-2101.
No Suggested Reading articles found!