ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles |
Dunwei Peng(彭敦维)1,2, Yunpeng Zhang(张云鹏)1, Xiaolin Tian(田晓林)2, Hua Hou(侯华)2,3, and Yuhong Zhao(赵宇宏)4,2,† |
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; 2 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; 4 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method. Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode, microscopic morphology, the free energy, crack area change, and causing fracture failure. Crack propagation mode depends on the dislocation activity near the crack tip. Brittle propagation of the crack occurs due to dislocation always at crack tip. Dislocation is emitted at the front end of the crack tip and plastic deformation occurs, which belongs to ductile propagation. The orientation angles of 9° and 14° are brittle-ductile mixed propagation, while the orientation angles of 19° and 30° are brittle propagation and no dislocation is formed under dynamic tension. The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is 14° under static tension, and the crack would be ductile propagation. While the orientation angle is 19° and 30°, the crack propagates in a certain direction, which is a kind of brittle propagation. This work has some practical significance in preventing material fracture failure and improving material performance.
|
Received: 31 August 2022
Revised: 20 December 2022
Accepted manuscript online: 18 January 2023
|
PACS:
|
46.50.+a
|
(Fracture mechanics, fatigue and cracks)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52074246). |
Corresponding Authors:
Yuhong Zhao
E-mail: zhaoyuhong@nuc.edu.cn
|
Cite this article:
Dunwei Peng(彭敦维), Yunpeng Zhang(张云鹏), Xiaolin Tian(田晓林), Hua Hou(侯华), and Yuhong Zhao(赵宇宏) Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles 2023 Chin. Phys. B 32 044601
|
[1] Buehler M J, Abraham F F and Gao H J 2003 Nature 426 141 [2] Pineau A, Benzerga A A and Pardoen T 2016 Acta Mater. 107 424 [3] Kou M M, Lian Y J and Wang Y T 2019 Eng. Fract. Mech. 212 41 [4] Shibanuma K, Hosoe T, Yamaguchi H, Tsukamoto M, Suzuki K and Aihara S 2018 Eng. Fract. Mech. 204 434 [5] Liu G T and Yang L Y 2017 Chin. Phys. B 26 094601 [6] Jiang L J and Liu G T 2017 Chin. Phys. B 26 044601 [7] Guo H J, Liu Y H, Su Y N, Zhang Q L and Zhan G D 2020 Chin. Phys. B 29 104602 [8] Guo L Y, Chen Z, Long J and Yang T 2015 Acta Phys. Sin. 64 178102 (in Chinese) [9] Liang J J, Gao N and Li Y H 2020 Acta Phys. Sin. 69 116102 (in Chinese) [10] Zheng Z Q, Cai B, Zhai T and Li S C 2011 Mater. Sci. Eng. A-Struct. 528 2017 [11] Gope P C and Thakur A 2011 Fatigue Fract. Eng. M 34 804 [12] Tanaka M, Tarleton E and Roberts S G 2008 Acta Mater. 56 5123 [13] Decelis B, Argon A S and Yip S 1983 J. Appl. Phys. 54 4864 [14] Zhang Y W, Wang T C and Tang Q H 1995 Scripta Metal. Mater. 33 267 [15] Cao A J and Wei Y G 2007 Phys. Rev. B 76 024113 [16] Tian X L, Zhao Y H, Peng D W, Guo Q W, Guo Z and Hou H 2021 T. Nonferr. Metal. Soc. 31 1175 [17] Zhao Y H, Zhang B, Hou H, Chen W P and Wang M 2019 J. Mater. Sci. Technol. 35 1044 [18] Chen W P, Zhao Y H, Yang S, Zhang D and Hou H 2021 Adv. Compos. Hybrid Ma. 4 371 [19] Jing H X, Xing H, Dong X L and Han Y S 2022 J. Electrochem. Soc. 169 032511 [20] Xing H, Dong X L, Sun D K and Han Y S 2020 J. Mater. Sci. Technol. 57 26 [21] Qi K W, Zhao Y H, Guo H J, Tian X L and Hou H 2019 Acta Phys. Sin. 68 170504 (in Chinese) [22] Yamanaka A, Mcreynolds K and Voorhees P W 2017 Acta Mater. 133 160 [23] Qi K W, Zhao Y H, Tian X L, Peng D W, Sun Y Y and Hou H 2020 Acta Phys. Sin. 69 140504 (in Chinese) [24] Guo H J, Zhao Y Y, Sun Y Y, Tian J Z, Hou H, Qi K W and Tian X L 2019 Superlattice. Microst. 129 163 [25] Lu Y J, Gao Y J, Deng Q Q, Liu Z Y, Li Y X, Huang Z J and Luo Z R 2019 Eur. Phys. J. B 92 1 [26] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K J, Li X Y, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039 [27] Zhao Y H, Jing J H, Chen L W, Xu F H and Hou H 2021 Acta Metall. Sin. 57 1107 [28] Elder K R and Grant M 2004 Phys. Rev. E 70 051605 [29] Gomez H and Nogueira X 2012 Comput. Method. Appl. M 249-252 52 [30] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504 [31] Gao Y J, Luo Z R, Huang L L and Lin K 2013 Chin. J. Nonferus. Met. 23 1892 [32] Huang L L, Gao Y J, Deng Q Q, Liu Z Y, Luo Z R, Li Y X and Huang Z J 2020 Comput. Mater. Sci. 173 109413 [33] Liu Z Y, Gao Y J, Deng Q Q, Li Y X, Huang Z J, Liao K and Luo Z R 2020 Comput. Mater. Sci. 179 109640 [34] Gao Y J, Deng Q Q, Huang L L, Ye L, Wen Z C and Luo Z R 2017 Comput. Mater. Sci. 130 64 [35] Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G and Lin K 2016 Model. Simul. Mater. Sci. 24 055010 [36] Hu S, Chen Z, Peng Y Y, Liu Y J and Guo L Y 2016 Comput. Mater. Sci. 121 143 [37] Hu S and Wang S 2019 Physica B 552 104 [38] Hu S 2020 Fatigue Fract. Eng. M 43 63 [39] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701 [40] Swift J and Hohenberg P C 1977 Phys. Rev. A 15 319 [41] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107 [42] Cheng M and Warren J A 2008 J. Comput. Phys. 227 6241 [43] Morozov N F, Ovid'Ko L A, Sheinerman A G and Aifantis E C 2010 J. Mech. Phys. Solids 58 1088 [44] Berry J, Elder K R and Grant M 2008 Phys. Rev. B 77 224114 [45] Rountree C L, Kalia R K, Lidorikis E, Nakano A and Vashishta P 2002 Ann. Rev. Mater. Res. 32 377 [46] Wu W P and Yao Z Z 2014 Strength Mater. 46 164 [47] Wu W P and Yao Z Z 2012 Theor. Appl. Fract. Mec. 62 67 [48] Rice J R and Thomson R 1974 Philos. Mag. 29 73 [49] Huang M X and Li Z H 2004 J. Mech. Phys. Solids 52 1991 [50] Saka H and Agata Y 2003 Mater. Sci. Eng. A-Struct. 350 57 [51] Cao L X and Wang C Y 2006 Chin. Phys. B 15 2092 [52] Tvergaard V and Hutchinson J W 2002 Int. J. Solids Struct. 39 3581 [53] Li X D, Wang Y B, Chu W Y, Wang C and Bai C L 1998 Sci. China Ser. E 41 411 [54] Zhu T, Li J and Yip S 2004 Phys. Rev. Lett. 93 025503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|