Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075206    DOI: 10.1088/1674-1056/acae7e
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas

Hui Li(李慧)1, Ji-Quan Li(李继全)2, Feng Wang(王丰)1,†, Qi-Bin Luan(栾其斌)3, Hong-En Sun(孙宏恩)3, and Zheng-Xiong Wang(王正汹)1,‡
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Southwestern Institute of Physics, Chengdu 610041, China;
3 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  As an obstacle in high-performance discharge in future fusion devices, disruptions may do great damages to the reactors through causing strong electromagnetic forces, heat loads and so on. The drift waves in tokamak are illustrated to play essential roles in the confinement performance as well. Depending on the plasma parameters and mode perpendicular wavelength, the mode phase velocity is either in the direction of electron diamagnetic velocity (namely, typical trapped electron mode) or in the direction of ion diamagnetic velocity (namely, the ubiquitous mode). Among them, the ubiquitous mode is directly investigated using gyro-fluid simulation associating with gyro-fluid equations for drift waves in tokamak plasmas. The ubiquitous mode is charactered by the short wavelength and propagates in ion diamagnetic direction. It is suggested that the density gradient is essential for the occurrence of the ubiquitous mode. However, the ubiquitous mode is also influenced by the temperature gradients and other plasma parameters including the magnetic shear and the fraction of trapped electrons. Furthermore, the ubiquitous mode may play essential roles in the turbulent transport. Meanwhile, the relevant parameters are scanned using a great number of electrostatic gyro-fluid simulations. The stability map is taken into consideration with the micro-instabilities contributing to the turbulent transport. The stability valley of the growth rates occurs with the assumption of the normalized temperature gradient equaling to the normalized density gradient.
Keywords:  drift waves      nonlinear phenomena      plasma simulation  
Received:  23 September 2022      Revised:  14 December 2022      Accepted manuscript online:  27 December 2022
PACS:  52.35.Kt (Drift waves)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.65.-y (Plasma simulation)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 12205035 and 11925501) and also partially by the National Key Research and Development Program of China (Grant Nos. 2017YFE0301200 and 2017YFE0301201).
Corresponding Authors:  Feng Wang, Zheng-Xiong Wang     E-mail:  fengwang@dlut.edu.cn;zxwang@dlut.edu.cn

Cite this article: 

Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹) Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas 2023 Chin. Phys. B 32 075206

[1] Hoang G T, Bourdelle C, Garbet X, et al. 2006 Nucl. Fusion 46 306
[2] Guttenfelder W, Peterson J L, Candy J, Kaye S M, Ren Y, Bell R E, Hammett G W, LeBlanc B P, Mikkelsen D R, Nevins W M and Yuh H 2013 Nucl. Fusion 53 093022
[3] Maeyama S, Idomura Y, Watanabe T H, Nakata M, Yagi M, Miyato N, Ishizawa A and Nunami M 2015 Phys. Rev. Lett. 114 255002
[4] Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135
[5] Hender T C, Wesley J C, Bialek J, Bondeson A, Boozer A H, Buttery R J, Garofalo A, Goodman T P, Granetz R S and Gribov Y 2007 Nucl. Fusion 47 S128
[6] de Vries P C, Pautasso G, Humphreys D, Lehnen M, Maruyama S, Snipes J A, Vergara A and Zabeo L 2016 Fusion Sci. Technol. 69 471
[7] Zohm H, Maraschek M, Pautasso G, et al. 1995 Plasma Phys. Control. Fusion 37 A313
[8] Wang H H, Sun Y W, Shi T H, et al. 2020 Nucl. Fusion 60 126008
[9] Seo B, Wongwaitayakornkul P, Haw M A, Ryan S M, Li H and Paul M B 2020 Phys. Plasmas 27 022109
[10] Wei L, Wang Z X, Li J Q, Hu Z Q and Kishimoto Y 2019 Chin. Phys. B 28 125203
[11] Wang Z, Tang W and Wei L 2022 Plasma Sci. Technol. 24 033001
[12] Li J C, Dong J Q, Ji X Q and Hu Y J 2021 Chin. Phys. B 30 075203
[13] Ji X Q, Yang Q W, Feng B B, Xu Y, Sun T F and Yuan B S 2011 Chin. Phys. B 20 095205
[14] Petty C C and Luce T C 1994 Nucl. Fusion 34 121
[15] Dong J Q and Horton W 1995 Phys. Plasmas 2 3412
[16] Hu W, Feng H Y and Zhang W L 2019 Chin. Phys. Lett. 36 085201
[17] Sun T T, Chen S Y, Wang Z H, Peng X D, Huang J, Mou M L and Tang C J 2015 Chin. Phys. Lett. 32 035201
[18] Xiao Y and Lin Z 2009 Phys. Rev. Lett. 103 085004
[19] Dimit A M, Bateman G, Beer M A, Cohen B I, Dorl W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R and Weiland J 2000 Phys. Plasmas 7 969
[20] Arnichand H, Sabot R, Hacquin S, Krämer-Flecken A, Garbet X, Citrin J, Bourdelle C, Hornung G, Bernardo J, Bottereau C, Clairet F, Falchetto G and Giacalone J C 2014 Nucl. Fusion 54 123017
[21] Lee W, Kwon J M, Ko S H, Leem J, Yun G S, Park H K, Park Y S, Kim K W and Luhmann N C 2018 Phys. Plasmas 25 022513
[22] Zhong W L, Shi Z B, Yang Z J, Xiao G L, Yang Z C, Zhang B Y, Shi P W, Du H R, Pan X M, Zhou R B, Wan L H, Zou X L, Xu M, Duan X R, Liu Y, Zhuang G, HL-2A Team and J-TEXT Team 2016 Phys. Plasmas 23 060702
[23] Mordijck S, Wang X, Doyle E J, Rhodes T L, Schmitz L, Zeng L, Staebler G M, Petty C C, Groebner R J, Ko W H, Grierson B A, Solomon W M, Tala T, Salmi A, Chrystal C, Diamond P H and McKee G R 2015 Nucl. Fusion 55 113025
[24] Ryter F, Angioni C, Dunne M, Fischer R, Kurzan B, Lebschy A, McDermott R M, Suttrop W, Tardini G, Viezzer E, Willensdorfer M and the ASDEX Upgrade Team 2019 Nucl. Fusion 59 096052
[25] Mariani A, Brunner S, Dominski J, Merle A, Merlo G, Sauter O, Gorler T, Jenko F and Told D 2018 Phys. Plasmas 25 012313
[26] Candy J 2005 Phys. Plasmas 12 072307
[27] Snyder P B and Hammett G W 2001 Phys. Plasmas 8 744
[28] Snyder P B 1999 Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas (Ph.D. Thesis) (Princeton: Princeton University)
[29] Kinsey J E, Waltz R E and Candy J 2006 Phys. Plasmas 13 022305
[30] Weikl A, Peeters A G, Rath F, Grosshauser S R, Buchholz R, Hornsby W A, Seiferling F and Strintzi D 2017 Phys. Plasmas 24 102317
[31] Mariani A, Brunner S, Merlo G and Sauter O 2019 Plasma Phys. Control. Fusion 61 064005
[32] Han M K, Zhong W L, Dong J Q, et al. 2021 Nucl. Fusion 61 046010
[33] Li H, Li J, Wang Z, Wei L, Hu Z and Ren G 2020 Phys. Plasmas 27 082304
[34] Li H, Li J, Wang Z, Wei L and Hu Z 2022 Chin. Phys. B 31 065207
[35] Xu X Q, Nevins W M, Rognlien T D, Bulmer R H, Greenwald M, Mahdavi A, Pearlstein L D and Snyderd P 2003 Phys. Plasmas 10 5
[36] Coppi B and Rewoldt G 1974 Phys. Rev. Lett. 33 1329
[37] Coppi B and Pegoraro F 1977 Nucl. Fusion 17 969
[38] Coppi B and Rewoldt G 1974 Phys. Lett. 49 36
[39] Shen Y, Dong J Q, Li J, Han M K, Li J Q, Sun A P and Qu H P 2019 Nucl. Fusion 59 106011
[40] Nordman H, Weiland J and Jarmén A 1990 Nucl. Fusion 30 983
[41] Beer M A 1995 Gyrofluid models of turbulent transport in tokamaks (Ph.D. Thesis) (Princeton: Princeton University)
[42] Garbet X, Garzotti L, Mantica P, Nordman H, Valovic M, Weisen H and Angioni C 2003 Phys. Rev. Lett. 91 035001
[43] Garbet X, Dubuit N, Asp E, Sarazin Y, Bourdelle C, Ghendrih P and Hoang G T 2005 Phys. Plasmas 12 082511
[44] Li H, Li J Q, Fu Y L, Wang Z X and Jiang M 2022 Nucl. Fusion 62 036014
[45] Li J, et al. 2020 IAEA Fusion Energy Conference, 2020, Nice, pp. 7-21
[1] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[2] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[3] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[4] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[5] Backward Raman amplification in plasmas with chirped wideband pump and seed pulses
Wu Zhao-Hui (吴朝辉), Wei Xiao-Feng (魏晓峰), Zuo Yan-Lei (左言磊), Liu Lan-Qin (刘兰琴), Zhang Zhi-Meng (张智猛), Li Min (李敏), Zhou Yu-Liang (周煜梁), Su Jing-Qin (粟敬钦). Chin. Phys. B, 2015, 24(1): 014211.
[6] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[7] Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng(邓永锋), Han Xian-Wei(韩先伟), and Tan Chang(谭畅). Chin. Phys. B, 2009, 18(9): 3870-3876.
[8] Simulation of radio-frequency atmospheric pressure glow discharge in $\gamma$ mode
Shang Wan-Li(尚万里), Wang De-Zhen(王德真), and Michael G. Kong. Chin. Phys. B, 2007, 16(2): 485-492.
[9] Surface morphology evolution of Si(110) by ion sputtering as a function of sample temperature
Qi Le-Jun (漆乐俊), Ling Li (凌立), Li Wei-Qing (李维卿), Yang Xin-Ju (杨新菊), Gu Chang-Xin (顾昌鑫), Lu Ming (陆明). Chin. Phys. B, 2005, 14(8): 1626-1630.
[10] A numerical simulation of the backward Raman amplifying in plasma
Wang Hong-Yu (王虹宇), Huang Zu-Qia (黄祖洽). Chin. Phys. B, 2005, 14(12): 2560-2564.
[11] Influence of ion species ratio on grid-enhanced plasma source ion implantation
Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Liu Yuan-Fu (刘元富), Wang You-Nian (王友年), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(1): 65-70.
No Suggested Reading articles found!