1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China; 2 Southwestern Institute of Physics, Chengdu 610041, China; 3 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract As an obstacle in high-performance discharge in future fusion devices, disruptions may do great damages to the reactors through causing strong electromagnetic forces, heat loads and so on. The drift waves in tokamak are illustrated to play essential roles in the confinement performance as well. Depending on the plasma parameters and mode perpendicular wavelength, the mode phase velocity is either in the direction of electron diamagnetic velocity (namely, typical trapped electron mode) or in the direction of ion diamagnetic velocity (namely, the ubiquitous mode). Among them, the ubiquitous mode is directly investigated using gyro-fluid simulation associating with gyro-fluid equations for drift waves in tokamak plasmas. The ubiquitous mode is charactered by the short wavelength and propagates in ion diamagnetic direction. It is suggested that the density gradient is essential for the occurrence of the ubiquitous mode. However, the ubiquitous mode is also influenced by the temperature gradients and other plasma parameters including the magnetic shear and the fraction of trapped electrons. Furthermore, the ubiquitous mode may play essential roles in the turbulent transport. Meanwhile, the relevant parameters are scanned using a great number of electrostatic gyro-fluid simulations. The stability map is taken into consideration with the micro-instabilities contributing to the turbulent transport. The stability valley of the growth rates occurs with the assumption of the normalized temperature gradient equaling to the normalized density gradient.
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 12205035 and 11925501) and also partially by the National Key Research and Development Program of China (Grant Nos. 2017YFE0301200 and 2017YFE0301201).
Corresponding Authors:
Feng Wang, Zheng-Xiong Wang
E-mail: fengwang@dlut.edu.cn;zxwang@dlut.edu.cn
Cite this article:
Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹) Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas 2023 Chin. Phys. B 32 075206
[1] Hoang G T, Bourdelle C, Garbet X, et al. 2006 Nucl. Fusion46 306 [2] Guttenfelder W, Peterson J L, Candy J, Kaye S M, Ren Y, Bell R E, Hammett G W, LeBlanc B P, Mikkelsen D R, Nevins W M and Yuh H 2013 Nucl. Fusion53 093022 [3] Maeyama S, Idomura Y, Watanabe T H, Nakata M, Yagi M, Miyato N, Ishizawa A and Nunami M 2015 Phys. Rev. Lett.114 255002 [4] Schuller F C 1995 Plasma Phys. Control. Fusion37 A135 [5] Hender T C, Wesley J C, Bialek J, Bondeson A, Boozer A H, Buttery R J, Garofalo A, Goodman T P, Granetz R S and Gribov Y 2007 Nucl. Fusion47 S128 [6] de Vries P C, Pautasso G, Humphreys D, Lehnen M, Maruyama S, Snipes J A, Vergara A and Zabeo L 2016 Fusion Sci. Technol.69 471 [7] Zohm H, Maraschek M, Pautasso G, et al. 1995 Plasma Phys. Control. Fusion 37 A313 [8] Wang H H, Sun Y W, Shi T H, et al. 2020 Nucl. Fusion60 126008 [9] Seo B, Wongwaitayakornkul P, Haw M A, Ryan S M, Li H and Paul M B 2020 Phys. Plasmas27 022109 [10] Wei L, Wang Z X, Li J Q, Hu Z Q and Kishimoto Y 2019 Chin. Phys. B28 125203 [11] Wang Z, Tang W and Wei L 2022 Plasma Sci. Technol.24 033001 [12] Li J C, Dong J Q, Ji X Q and Hu Y J 2021 Chin. Phys. B30 075203 [13] Ji X Q, Yang Q W, Feng B B, Xu Y, Sun T F and Yuan B S 2011 Chin. Phys. B20 095205 [14] Petty C C and Luce T C 1994 Nucl. Fusion34 121 [15] Dong J Q and Horton W 1995 Phys. Plasmas2 3412 [16] Hu W, Feng H Y and Zhang W L 2019 Chin. Phys. Lett.36 085201 [17] Sun T T, Chen S Y, Wang Z H, Peng X D, Huang J, Mou M L and Tang C J 2015 Chin. Phys. Lett.32 035201 [18] Xiao Y and Lin Z 2009 Phys. Rev. Lett.103 085004 [19] Dimit A M, Bateman G, Beer M A, Cohen B I, Dorl W, Hammett G W, Kim C, Kinsey J E, Kotschenreuther M, Kritz A H, Lao L L, Mandrekas J, Nevins W M, Parker S E, Redd A J, Shumaker D E, Sydora R and Weiland J 2000 Phys. Plasmas7 969 [20] Arnichand H, Sabot R, Hacquin S, Krämer-Flecken A, Garbet X, Citrin J, Bourdelle C, Hornung G, Bernardo J, Bottereau C, Clairet F, Falchetto G and Giacalone J C 2014 Nucl. Fusion54 123017 [21] Lee W, Kwon J M, Ko S H, Leem J, Yun G S, Park H K, Park Y S, Kim K W and Luhmann N C 2018 Phys. Plasmas25 022513 [22] Zhong W L, Shi Z B, Yang Z J, Xiao G L, Yang Z C, Zhang B Y, Shi P W, Du H R, Pan X M, Zhou R B, Wan L H, Zou X L, Xu M, Duan X R, Liu Y, Zhuang G, HL-2A Team and J-TEXT Team 2016 Phys. Plasmas23 060702 [23] Mordijck S, Wang X, Doyle E J, Rhodes T L, Schmitz L, Zeng L, Staebler G M, Petty C C, Groebner R J, Ko W H, Grierson B A, Solomon W M, Tala T, Salmi A, Chrystal C, Diamond P H and McKee G R 2015 Nucl. Fusion55 113025 [24] Ryter F, Angioni C, Dunne M, Fischer R, Kurzan B, Lebschy A, McDermott R M, Suttrop W, Tardini G, Viezzer E, Willensdorfer M and the ASDEX Upgrade Team 2019 Nucl. Fusion59 096052 [25] Mariani A, Brunner S, Dominski J, Merle A, Merlo G, Sauter O, Gorler T, Jenko F and Told D 2018 Phys. Plasmas25 012313 [26] Candy J 2005 Phys. Plasmas12 072307 [27] Snyder P B and Hammett G W 2001 Phys. Plasmas8 744 [28] Snyder P B 1999 Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas (Ph.D. Thesis) (Princeton: Princeton University) [29] Kinsey J E, Waltz R E and Candy J 2006 Phys. Plasmas13 022305 [30] Weikl A, Peeters A G, Rath F, Grosshauser S R, Buchholz R, Hornsby W A, Seiferling F and Strintzi D 2017 Phys. Plasmas24 102317 [31] Mariani A, Brunner S, Merlo G and Sauter O 2019 Plasma Phys. Control. Fusion61 064005 [32] Han M K, Zhong W L, Dong J Q, et al. 2021 Nucl. Fusion61 046010 [33] Li H, Li J, Wang Z, Wei L, Hu Z and Ren G 2020 Phys. Plasmas27 082304 [34] Li H, Li J, Wang Z, Wei L and Hu Z 2022 Chin. Phys. B31 065207 [35] Xu X Q, Nevins W M, Rognlien T D, Bulmer R H, Greenwald M, Mahdavi A, Pearlstein L D and Snyderd P 2003 Phys. Plasmas10 5 [36] Coppi B and Rewoldt G 1974 Phys. Rev. Lett.33 1329 [37] Coppi B and Pegoraro F 1977 Nucl. Fusion17 969 [38] Coppi B and Rewoldt G 1974 Phys. Lett.49 36 [39] Shen Y, Dong J Q, Li J, Han M K, Li J Q, Sun A P and Qu H P 2019 Nucl. Fusion59 106011 [40] Nordman H, Weiland J and Jarmén A 1990 Nucl. Fusion30 983 [41] Beer M A 1995 Gyrofluid models of turbulent transport in tokamaks (Ph.D. Thesis) (Princeton: Princeton University) [42] Garbet X, Garzotti L, Mantica P, Nordman H, Valovic M, Weisen H and Angioni C 2003 Phys. Rev. Lett.91 035001 [43] Garbet X, Dubuit N, Asp E, Sarazin Y, Bourdelle C, Ghendrih P and Hoang G T 2005 Phys. Plasmas12 082511 [44] Li H, Li J Q, Fu Y L, Wang Z X and Jiang M 2022 Nucl. Fusion62 036014 [45] Li J, et al. 2020 IAEA Fusion Energy Conference, 2020, Nice, pp. 7-21
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.