Abstract The effect of tearing modes on the confinement of runaway electrons is studied in Experimental Advanced Superconducting Tokamak (EAST). The general tendency of the radial diffusion coefficient of runaway electrons (REs) Dr is derived based on the time response relation between the tearing modes and runaway electrons. The results indicate that, the magnetic fluctuations of tearing modes will enhance the radial diffusion of runaway electrons when the magnetic island is small. Following the increasing of the magnetic fluctuations of the tearing modes, the formed large magnetic island may weaken the radial diffusion of runaway electrons. The results can be important to understand the confinement of runaway electrons when large magnetic islands exist in the plasma.
Fund: Project partly supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021445), the Science Foundation of Institute of Plasma Physics of Chinese Academy of Sciences (Grant No. DSJJ-2022-05), and partly supported by the Comprehensive Research Facility for Fusion Technology Program of China (Grant No. 2018-000052-73-01-001228).
Rui-Jie Zhou(周瑞杰) Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak 2023 Chin. Phys. B 32 075204
[1] Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R and Gribov Y 2007 Nucl. Fusion47 S128 [2] Strait E J, Barr J L, Baruzzo M, et al. 2019 Nucl. Fusion59 112012 [3] Boozer A H 2017 Nucl. Fusion57 056018 [4] Boozer A H 2019 Plasma Phys. Control. Fusion61 024002 [5] Loarte A, Riccardo V, Martin-Solís J, Paley J, Huber A, Lehnen M and Contributors J E 2011 Nucl. Fusion51 073004 [6] Lehnen M, Arnoux G, Hartmann N, Brezinsek S, Devaux S, Huber A, Jachmich S, Kruezi U, Matthews G F, Reux C, Riccardo V, Sieglin B, Stamp M F and de Vries P C 2013 J. Nucl. Mater.438 S102 [7] Hauff T and Jenko F 2009 Phys. Plasmas16 102308 [8] Zhou R J, Hu L Q, Li E Z, Xu M, Zhong G Q, Xu L Q and Lin S Y 2013 Phys. Plasmas20 032511 [9] Mynick H and Strachan J 1981 Phys. Fluids24 695 [10] Kurzan B, Steuer K and Fussmann G 1995 Phys. Rev. Lett.75 4626 [11] Entrop I, Cardozo N J L, Jaspers R and Finken K H 1998 Plasma Phys. Control. Fusion40 1513 [12] Chen Z, Jin W and Zhang Y 2012 J. Korean Phys. Soc.61 1037 [13] Rechester A and Rosenbluth M 1978 Phys. Rev. Lett.40 38 [14] Abdullaev S, Finken K, Kudyakov T and Lehnen M 2010 Contrib. Plasma Phys.50 929 [15] Abdullaev S, Finken K and Forster M 2012 Phys. Plasmas19 072502 [16] Shi T, Wan B, Shen B, Sun Y, Qian J, Hu L, Gong X, Liu G, Luo Z, Zhong G, Xu L, Zhang J, Lin S, Jie Y, Wang F, Lv B and the EAST Team 2013 Plasma Phys. Control. Fusion55 055007 [17] Hoppe M, Embréus O, Tinguely R A, Granetz R S, Stahl A and Fülöp T 2018 Nucl. Fusion58 026032 [18] Tinguely R A, Granetz R S, Hoppe M and Embréus O 2018 Nucl. Fusion58 076019 [19] Zhou R J, Pankratov I M, Hu L Q, Xu M and Yang J H 2014 Phys. Plasmas21 063302 [20] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y and the EAST team 2018 Chin. Phys. B27 55206 [21] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y, Zhang J Y and Li P 2021 Chin. Phys. B30 055206
[1]
Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[2]
Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.