INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing |
Meng-Zhou Chen(陈孟州)1, Liu-Ying Wang(汪刘应)1,†, Gu Liu(刘顾)1, Chao-Qun Ge(葛超群)1, Di-Chen Li(李涤尘)2, and Qing-Xuan Liang(梁庆宣)2 |
1 Xi'an Research Institute of High Technology, Xi'an 710025, China; 2 State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract The self-similarity, high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials. In this paper, the microwave absorption properties of the gradient dendritic fractal metamaterial structure (GDFMs) based on carbon black and acrylonitrile-butadiene-styrene composites were investigated. The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz. The rotational-symmetry GDFMs leads to the polarization independence, and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves. It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.
|
Received: 31 July 2022
Revised: 04 September 2022
Accepted manuscript online: 21 September 2022
|
PACS:
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
07.57.-c
|
(Infrared, submillimeter wave, microwave and radiowave instruments and equipment)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the Natural Science Foundation of Shaanxi Province of China (Grant No. 2022JQ-356), the Youth Fund of Rocket Force University of Engineering (Grant No. 2022QN-B017), and the National Natural Science Foundation of China (Grant No. 51905542). |
Corresponding Authors:
Liu-Ying Wang
E-mail: lywangxa@163.com
|
Cite this article:
Meng-Zhou Chen(陈孟州), Liu-Ying Wang(汪刘应), Gu Liu(刘顾), Chao-Qun Ge(葛超群), Di-Chen Li(李涤尘), and Qing-Xuan Liang(梁庆宣) Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing 2023 Chin. Phys. B 32 048103
|
[1] Zhang X F, Zhang D J, Fu Y J, Li S H, Wei Y, Chen K J, Wang X and Zhuang S L 2020 IEEE Antenn. Wirel. Pr. 19 821 [2] Mei H, Zhao X, Zhou S X, Han D Y, Xiao S S and Cheng L F 2019 Chem. Eng. J. 372 940 [3] Yang Z, Liang Q X, Duan Y B, Li Z H, Li D C and Cao Y 2021 Compos. Struct. 274 114330 [4] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802 [5] Luo W J, Yan S and Zhou J 2022 Interdiscip. Mater. 1 11 [6] Zhang F L, Li C, Fan Y C, Yang R S, Shen N H, Fu Q H, Zhang W H, Zhao Q, Zhou J, Koschny T and Soukoulis C M 2019 Adv. Mater. 31 1903206 [7] Mei H, Yang W Q, Zhao X, Yao L, Yao Y T, Chen C and Cheng L F 2021 Mater. Des. 197 109271 [8] Sheng J Q, Zhang Y, Liu L, Quan B, Zhang N and Ji G B 2019 J. Alloys Compd. 809 151866 [9] Zhang N, Gu W H, Zhao Y, Zheng J, Pei C C, Fan F Y and Ji G B 2021 J Mater Sci: Mater Electron 32 25809 [10] Luo H, Chen F, Wang X, Dai W Y, Xiong Y, Yang J J and Gong R Z 2019 Compos. Part A-Appl. S 119 1 [11] Li M L, Muneer Badar, Yi Z X and Zhu Q 2018 Adv. Opt. Mater. 6 1701238 [12] Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y and Chen Y S 2015 Adv. Mater. 27 2049 [13] Xu J, Fan Y C, Su X P, Guo J, Zhu J X, Fu Q D and Zhang F L 2021 Opt. Mater. 113 110852 [14] Duan Y B, Liang Q X, Yang Z, Li Z H, Yin H Y, Cao Y and Li D C 2021 Mater. Des. 208 109900 [15] Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F and Zhang L T 2017 Mater. Des. 46 1 [16] Yang D, Yin Y F, Zhang Z K, Li D C and Cao Y 2020 Mater. Lett. 281 128571 [17] Huang Y, Song W L, Wang C, Xu Y, Wei W, Chen M, Tang L and Fang D 2018 Compos. Sci. Technol. 162 206 [18] Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F and Zhou D 2018 Acta Phys. Sin. 67 084202 (in Chinese) [19] Fu T, Liu X X, Wen G H, Sun T Y, Xiao G L and Li H O 2021 Chin. Phys. B 30 14201 [20] Cheng Y Z, Luo H and Chen F 2020 J. Appl. Phys. 127 214902 [21] Wen Y Z, Ma W, Bailey J, Matmon G and Yu X M 2015 IEEE Trans. THz Sci. Technol. 5 406 [22] Wang T, He H H, Ding M D, Mao J B, Sun R and Sheng L 2022 Chin. Phys. B 31 37804 [23] Xu H X, Wang G M, Tao Z and Cui T J 2014 Sci. Rep. 4 5744 [24] Zhou D, Huang X Z and Du Z J 2017 IEEE Antenn. Wirel. Pr. 16 133 [25] Saptarshi G and Sungjoon L 2018 IEEE Antenn. Wirel. Pr. 17 2379 [26] Yin L X, Tian X Y, Shang Z T and Li D C 2019 Mater. Lett. 239 132 [27] Jia W, Ren P W, Tian Y C and Fan C Z 2019 Chin. Phys. B 28 26102 [28] Zhang J M, He D L, Wang G W, Wang P, Qiao L, Wang T and Li F S 2019 Chin. Phys. B 28 58401 [29] Yang R S, Xu J, Shen N H, Zhang F L, Fu Q H, Li J J, Li H Q and Fan Y C 2021 InfoMat 3 577 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|