Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054301    DOI: 10.1088/1674-1056/ac90b1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional acoustic propagation model for shallow waters based on an indirect boundary element method

Edmundo F. Lavia1,2,†, Juan D. Gonzalez1,2, and Silvia Blanc1,2
1 Acoustic Propagation Department, Argentinian Navy Research Office(DIIV), Buenos Aires 1638, Argentina;
2 UNIDEF(National Council of Scientific and Technical Research/Ministry of Defense), Buenos Aires, Argentina
Abstract  This work has a two-fold purpose. On the one hand, the theoretical formulation of a three-dimensional (3D) acoustic propagation model for shallow waters with a constant sound speed is presented, based on the boundary element method (BEM), which uses a half-space Green function instead of the more conventional free-space Green function. On the other hand, a numerical implementation is illustrated to explore the formulation in simple idealized cases, controlled by a few parameters, which provides necessary tests for the accuracy and performance of the model. The half-space Green's function, which has been previously used in scattering and diffraction, adds terms to the usual expressions of the integral operators without altering their continuity properties. Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field. Likewise, numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.
Keywords:  three-dimensional acoustic propagation      boundary element method      half-space Green function  
Received:  28 May 2022      Revised:  14 August 2022      Accepted manuscript online:  09 September 2022
PACS:  43.20.Rz (Steady-state radiation from sources, impedance, radiation patterns, boundary element methods)  
  43.30.+m (Underwater sound)  
  92.10.Vz (Underwater sound)  
Corresponding Authors:  Edmundo F. Lavia     E-mail:  sivasadartantasvueltasnosirve@gmail.com

Cite this article: 

Edmundo F. Lavia, Juan D. Gonzalez, and Silvia Blanc Three-dimensional acoustic propagation model for shallow waters based on an indirect boundary element method 2023 Chin. Phys. B 32 054301

[1] Buckingham M J 1992 Journal d'acoustique (Les Ulis) 5 pp. 223-287
[2] Tolstoy A 1996 J. Comp. Acous. 04 243
[3] Sturm F and Korakas A 2013 J. Acoust. Soc. Am. 133 108
[4] Oliveira T C, Lin Y T and Porter M B 2021 Front. Marine Sci., pp. 1464
[5] Lin Y T, Duda T F and Newhall A E 2013 J. Comp. Acous. 21 1250018
[6] Heaney K D and Campbell R L 2016 J. Acoust. Soc. Am. 139 918
[7] Lin Y T, Newhall A E, Miller J H, Potty G R and Vigness-Raposa K J 2019 J. Acoust. Soc. America 145 335
[8] Taroudakis M I, Athanassoulis G A and Ioannidis J P 1990 J. Acoust. Soc. Am. 88 1515
[9] Porter M B 1992 Technical report, Naval Research Lab Washington DC
[10] DeCourcy B J and Duda T F 2020 J. Acoust. Soc. Am. 148 51
[11] Tu H, Wang Y, Lan Q, Liu W, Xiao W and Ma S 2021 J. Sound Vibrat. 511 116364
[12] de Moraes Calazan R and Rodríguez O C 2018 J. Acoust. Soc. Am. 143 2059
[13] Porter M B 2019 J. Acoust. Soc. Am. 146 2016
[14] Zhu Z J, Ma S Q, Zhu X Q, Lan Q, Piao S C and Cheng Y S 2022 Chin. Phys. B 31 ac7ccc
[15] Boyles, C A 1984 Acoustic Waveguides: Applications to Oceanic Science (John Wiley and Sons Inc)
[16] Li, C, Campbell B K, Liu Y and Yue D K 2019 J. Comput. Phys. 392 pp. 694-712
[17] Prario I, Cinquini M, Marques Rojo R, Gonzalez J D, Lavia E, Bos P and Blanc S 2022 Pure and Applied Geophysics 179 1
[18] Wu L L and Peng Z H 2015 Chin. Phys. Lett. 32 094302
[19] Dawson T W and Fawcett J A 1990 J. Acoust. Soc. Am. 87 1110
[20] Santiago, J A F and Wrobel L C 2000 Comput. Model. Eng. Sci. 1 pp. 73-80
[21] Santiago J A F and Wrobel L C 2004 Eng. Anal. Bound. Elem. 28 1375
[22] Seybert A F and Soenarko B 1998 J. Vib. Acoustics 110 112
[23] Kress R and Roach, G 1978 J. Mathemat. Phys. 19 pp. 1433-1437
[24] Colton D and Kress R 1998 Inverse acoustic and electromagnetic scattering theory, volume 93 (Springer-Verlag Berlin)
[25] Jensen F B, Kuperman W A, Porter M B, Schmidt, H and Tolstoy A 1994 Computational Ocean Acoustics (American Institute of Physics)
[26] Smith K B 2001 J. Comput. Acoust. 9 243
[27] Liu R Y and Li Z L 2019 Chin. Phys. B 28 014302
[28] Tappert F and Nghiem-Phu L 1985 J. Acoust. Soc. Am. 77 S101
[29] Kress R 2001 Scattering, Two-Volume Set: Scattering and Inverse Scattering in Pure and Applied Science, (Elsevier) pp. 37-51
[30] Gonzalez J D, Lavia E F, Blanc S, Maas M and Madirolas A 2020 J. Sound Vibrat., 486 115609
[31] Pekeris C L 1948 Geol. Soc. Am, Memoir 27
[32] Luo W Y, Yu X L, Yang X F and Zhang R H 2016 Chin. Phys. B 25 044302
[33] Foote K G 1980 J. Acoust. Soc. Am. 67 2084
[34] Mo Y X, Zhang C J, Lu L C and Guo S M 2022 Chin. Phys. B 28 084301
[35] Yan Z Y and Gao X W 2013 Engineer. Analys. Bound. Elements 37 409
[36] Li C and Lian J 2020 Appl. Sci. 10 2393
[37] Greengard, Leslie and Vladimir Rokhlin 1987 J. Comput. Phys. 73 325
[38] Li S D, Huang Q B and Li T Y 2012 Acta Phys. Sin. 61 064301 (in Chinese)
[39] Wu H Y and Jiang W 2012 Acta Phys. Sin. 61 054301 (in Chinese)
[1] A new magneto-cardiogram study using a vector model with a virtual heart and the boundary element method
Zhang Chen (张琛), Shou Guo-Fa (寿国法), Lu Hong (陆宏), Hua Ning (华宁), Tang Xue-Zheng (唐雪正), Xia Ling (夏灵), Ma Ping (马平), Tang Fa-Kuan (唐发宽). Chin. Phys. B, 2013, 22(9): 090701.
[2] Simulating regular wave propagation over a submerged bar by boundary element method model and Boussinesq equation model
Li Shuang (李爽), He Hai-Lun (何海伦). Chin. Phys. B, 2013, 22(2): 024701.
[3] The forward and inverse problem of cardiac magnetic fields based on concentric ellipsoid torso-heart model
Wang Qian(王倩), Hua Ning(华宁), Tang Xue-Zheng(唐雪正), Lu Hong(陆宏), Ma Ping(马平), and Tang Fa-Kuan(唐发宽). Chin. Phys. B, 2010, 19(8): 080601.
[4] Forward and inverse problem for cardiac magnetic field and electric potential using two boundary element methods
Tang Fa-Kuan(唐发宽), Wang Qian(王倩), Hua Ning(华宁), Tang Xue-Zheng(唐雪正), Lu Hong(陆宏), and Ma Ping(马平). Chin. Phys. B, 2010, 19(12): 120601.
[5] An efficient numerical approach to electrostatic microelectromechanical system simulation
Li Pu(李普). Chin. Phys. B, 2009, 18(11): 4769-4776.
No Suggested Reading articles found!