Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080305    DOI: 10.1088/1674-1056/accb43
GENERAL Prev   Next  

Variational quantum simulation of the quantum critical regime

Zhi-Quan Shi(石志全)1, Xu-Dan Xie(谢旭丹)1, and Dan-Bo Zhang(张旦波)1,2,†
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
2. Guangdong--Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Abstract  The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures. While it is of great physical interest, simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity. Herein, we propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer. The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state, in which the entropy can be analytically obtained from the initial state, and thus the free energy can be accessed conveniently. With numeral simulation, using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line. Moreover, the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states. Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
Keywords:  quantum algorithm      quantum simulation      quantum critical point  
Received:  11 January 2023      Revised:  06 April 2023      Accepted manuscript online:  07 April 2023
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.12005065) and the Guangdong Basic and Applied Basic Research Fund (Grant No.2021A1515010317).
Corresponding Authors:  Dan-Bo Zhang     E-mail:  dbzhang@m.scnu.edu.cn

Cite this article: 

Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波) Variational quantum simulation of the quantum critical regime 2023 Chin. Phys. B 32 080305

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[3] Meyer-Ortmanns H 1996 Rev. Mod. Phys. 68 473
[4] Stephanov M, Rajagopal K and Shuryak E 1998 Phys. Rev. Lett. 81 4816
[5] Troyer M and Wiese U J 2005 Phys. Rev. Lett 94 170201
[6] Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654
[7] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579
[8] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[9] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[10] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392
[11] Terhal B M and DiVincenzo D P 2000 Phys. Rev. A 61 022301
[12] Poulin D and Wocjan P 2009 Phys. Rev. Lett. 103 220502
[13] Temme K, Osborne T J, Vollbrecht K G, Poulin D and Verstraete F 2011 Nature 471 87
[14] Riera A, Gogolin C and Eisert J 2012 Phys. Rev. Lett. 108 080402
[15] Wu J and Hsieh T H 2019 Phys. Rev. Lett. 123 220502
[16] Verdon G, Marks J, Nanda S, Leichenauer S and Hidary J 2019 arXiv:1910.02071 [quant-ph]
[17] Liu J G, Mao L, Zhang P and Wang L 2021 Mach. Learn.: Sci. Technol. 2 025011
[18] Chowdhury A N, Low G H and Wiebe N 2020 arXiv:2002.00055 [quant-ph]
[19] Wang Y, Li G and Wang X 2021 Phys. Rev. Appl. 16 054035
[20] Zhu D, Johri S, Linke N M, Landsman K A, Alderete C H, Nguyen N H, Matsuura A Y, Hsieh T H and Monroe C 2020 Proc. Natl. Acad. Sci. USA 117 25402
[21] Zhang D B, Zhang G Q, Xue Z Y, Zhu S L and Wang Z 2021 Phys. Rev. Lett. 127 020502
[22] Xie X D, Guo X, Xing H, Xue Z Y, Zhang D B and Zhu S L (QuNu Collaboration) 2022 Phys. Rev. D 106 054509
[23] McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Information 5 75
[24] Preskill J 2018 Quantum 2 79
[25] Lau H K, Pooser R, Siopsis G and Weedbrook C 2017 Phys. Rev. Lett. 118 080501
[26] Zhang D B, Zhu S L and Wang Z D 2020 Phys. Rev. Lett. 124 010506
[27] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L and Coles P J 2021 Nat. Rev. Phys. 3 625
[28] McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C and Yuan X 2020 Rev. Mod. Phys. 92 015003
[29] Huang H L, Xu X Y, Guo C, Tian G, Wei S J, Sun X, Bao W S and Long G L 2022 arXiv:2211.08737 [quant-ph]
[30] Kitaev A Y 2001 Phys. Usp. 44 131
[31] Kardar M 2007 Statistical Physics of Particles (Cambridge: Cambridge University Press)
[32] Cuccoli A, Taiti A, Vaia R and Verrucchi P 2007 Phys. Rev. B 76 064405
[33] Amico L and Patané D 2007 Europhys. Lett. 77 17001
[34] Frérot I and Roscilde T 2019 Nat. Commun. 10 577
[35] Kliesch M, Gogolin C, Kastoryano M, Riera A and Eisert J 2014 Phys. Rev. X 4 031019
[36] Kuwahara T, Alhambra A M and Anshu A 2021 Phys. Rev. X 11 011047
[37] Ho W W and Hsieh T H 2019 SciPost Phys. 6 029
[38] Klich I, Refael G and Silva A 2006 Phys. Rev. A 74 032306
[39] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
[40] Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Science 364 260
[41] Audenaert K M 2007 J. Phys. A: Math. Theor. 40 8127
[42] Acharya J, Issa I, Shende N V and Wagner A B 2020 IEEE J. Sel. Areas Inf. Theory 1 454
[43] Martyn J and Swingle B 2019 Phys. Rev. A 100 032107
[44] Liu J G, Mao L, Zhang P and Wang L 2021 Mach. Learn.: Sci. Technol. 2 025011
[45] Chen B L and Zhang D B 2023 Chin. Phys. Lett. 40 010303
[46] Nielsen M A and Chuang I 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press)
[47] Cross A 2018 The IBM Q experience and QISKIT open-source quantum computing software. In: APS March Meeting Abstracts Vol. 2018 p. L58-003
[48] Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B and Yuen H 2020 PRX Quantum 1 020319
[49] Hadfield S, Wang Z, O'Gorman B, Rieffel E G, Venturelli D and Biswas R 2017 Algorithms 12 34
[50] Pedernales J S, Di Candia R, Egusquiza I L, Casanova J and Solano E 2014 Phys. Rev. Lett. 113 020505
[51] Li T, Guo X, Lai W K, Liu X, Wang E, Xing H, Zhang D B and Zhu S L (QuNu Collaboration) 2022 Phys. Rev. D 105 L111502
[52] Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516
[53] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
[54] Zhang D B and Yin T 2020 Phys. Rev. A 101 032311
[55] Yuan Z H, Yin T and Zhang D B 2021 Phys. Rev. A 103 012413
[1] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[2] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[5] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[6] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[7] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[8] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[9] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[10] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[11] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[12] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[13] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[14] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[15] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
No Suggested Reading articles found!