|
|
Dynamical evolution of photon-added thermal state in thermal reservoir |
Xue-Xiang Xu(徐学翔)1, Hong-Chun Yuan(袁洪春)2 |
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; 2 School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China |
|
|
Abstract The dynamical behavior of a photon-added thermal state (PATS) in a thermal reservoir is investigated by virtue of Wigner function (WF) and Wigner logarithmic negativity (WLN), where this propagation model is abstracted as an input-output problem in a thermal-loss channel. The density operator of the output optical field at arbitrary time can be expressed in the integration form of the characteristics function of the input optical field. The exact analytical expression of WF is given, which is closely related to the Laguerre polynomial and is dependent on the evolution time and other interaction parameters (related with the initial field and the reservoir). Based on the WLN, we observe the dynamical evolution of the PATS in the thermal reservoir. It is shown that the thermal noise will make the PATS lose the non-Gaussianity.
|
Received: 03 August 2019
Revised: 04 September 2019
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11665013). |
Corresponding Authors:
Xue-Xiang Xu, Hong-Chun Yuan
E-mail: xuxuexiang@jxnu.edu.cn;yuanhc@czust.edu.cn
|
Cite this article:
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春) Dynamical evolution of photon-added thermal state in thermal reservoir 2019 Chin. Phys. B 28 110301
|
[1] |
Louisell W H 1973 Quantum Statistical Properties of Radiation (New York:Wiley)
|
[2] |
Carmichael H J 1999 Statistical Methods in Quantum Optics 1(Berlin:Springer-Verlag)
|
[3] |
Carmichael H J 2008 Statistical Methods in Quantum Optics 2(Berlin:Springer-Verlag)
|
[4] |
Carmichael H J 1999 An Open Systems Approach to Quantum Optics (Berlin:Springer-Verlag)
|
[5] |
Weiss U 1999 Quantum Dissipative Systems (Singapore:World Scientific)
|
[6] |
Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford:Clarendon Press)
|
[7] |
Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag)
|
[8] |
Daeubler B, Risken H and Schoendorff L 1993 Phys. Rev. A 48 3955
|
[9] |
Briegel H J and Englert B G 1993 Phys. Rev. A 47 3311
|
[10] |
d'Ariano G M 1994 Phys. Lett. A 187 231
|
[11] |
Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
|
[12] |
Zhou N R, Hu L Y and Fan H Y 2011 Chin. Phys. B 20 120301
|
[13] |
Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
|
[14] |
Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
|
[15] |
Jiang N Q, Fan H Y, Xi S L, Tang L Y and Yuan X Z 2011 Chin. Phys. B 20 120302
|
[16] |
Xu X L, Li H Q and Fan H Y 2015 Chin. Phys. B 24 070306
|
[17] |
Wang C C and Fan H Y 2010 Chin. Phys. Lett. 27 110302
|
[18] |
Kim M S and Imoto N 1995 Phys. Rev. A 52 2401
|
[19] |
Jeong H, Lee J and Kim M S 2000 Phys. Rev. A 61 052101
|
[20] |
Agarwal G S and Tara K 1992 Phys. Rev. A 46 485
|
[21] |
Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
|
[22] |
Li S B 2008 Phys. Lett. A 372 6875
|
[23] |
Wang S J, Xu X X and Ma S J 2010 Int. J. Quant. Inf. 8 1373
|
[24] |
Meng X G, Wang J S, Fan H Y and Xia C W 2016 Chin. Phys. B 25 040302
|
[25] |
Gardner C W and Zoller P 2000 Quantum Noise (Berlin:Springer-Verlag)
|
[26] |
Xu X X and Yuan H C 2017 Int. J. Theor. Phys. 56 791
|
[27] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
|
[28] |
Stowe K 2007 An Introduction to Thermodynamics and Statistical Mechanics (Cambridge:Cambridge University Press)
|
[29] |
Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
|
[30] |
Kenfack A and Zyczkowski K 2004 J. Opt. B:Quantum Semiclass. Opt. 6 396
|
[31] |
Albarelli F, Genoni M G and Paris M G A 2018 Phys. Rev. A 98 052350
|
[32] |
Takagi R and Zhuang Q 2018 Phys. Rev. A 97 062337
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|