Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100303    DOI: 10.1088/1674-1056/aba2db
General Prev   Next  

On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing

Jie Sun(孙杰)1,2,3,† and Songfeng Lu(路松峰)1,3,
1 Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Internet, Anhui University, Hefei 230039, China
3 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
Abstract  

We present the analog analogue of Grover’s problem as an example of the time-independent Hamiltonian for applying the speed limit of the imaginary-time Schrödinger equation derived by Okuyama and Ohzeki and the new class of energy-time uncertainty relation proposed by Kieu. It is found that the computational time of the imaginary-time quantum annealing of this Grover search can be exponentially small, while the counterpart of the quantum evolution driven by the real-time Schrödinger equation could only provide square root speedup, compared with classic search. The present results are consistent with the cases of the time-dependent quantum evolution of the natural Grover problem in previous works. We once again emphasize that the logarithm and square root algorithmic performances are generic in imaginary-time quantum annealing and quantum evolution driven by real-time Schrödinger equation, respectively. Also, we provide evidences to search deep reasons why the imaginary-time quantum annealing can lead to exponential speedup and the real-time quantum annealing can make square root speedup.

Keywords:  time-independent Hamiltonian      imaginary-time quantum annealing      quantum speed limit      the energy-time uncertainty relation      continuous Grover’s search  
Received:  04 March 2020      Revised:  26 May 2020      Accepted manuscript online:  06 July 2020
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.-a (Quantum information)  
Corresponding Authors:  E-mail: sunjie_hust@sina.com Corresponding author. E-mail: lusongfeng@hotmail.com   
About author: 
†Corresponding author. E-mail: sunjie_hust@sina.com
‡Corresponding author. E-mail: lusongfeng@hotmail.com
* Project supported by the China Postdoctoral Science Foundation (Grant No. 2017M620322), the Priority Fund for the Postdoctoral Scientific and Technological Program of Hubei Province in 2017, the Seed Foundation of Huazhong University of Science and Technology (Grant No. 2017KFYXJJ070), and the Science and Technology Program of Shenzhen of China (Grant No. JCYJ 20180306124612893).

Cite this article: 

Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡ On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing 2020 Chin. Phys. B 29 100303

[1]
Bengtsson I, Zyczkowski K 2008 Geometry of Quantum States: An Introduction to Quantum Entanglement Cambridge Cambridge University Press 419
[2]
Levitin L B, Toffoli T 2009 Phys. Rev. Lett. 103 160502 DOI: 10.1103/PhysRevLett.103.160502
[3]
Mandelstam L, Tamm I 1991 Selected Papers Berlin Springer 115 123
[4]
Mulga G, Mayato R S, Egusquiza I 2008 Time in Quantum Mechanics 2 Berlin Springer 73 105
[5]
Aharonov Y, Bohm D 1961 Phys. Rev. 122 1649 DOI: 10.1103/PhysRev.122.1649
[6]
Anandan J, Aharonov Y 1990 Phys. Rev. Lett. 65 1697 DOI: 10.1103/PhysRevLett.65.1697
[7]
Vaidman L 1991 Am. J. Phys. 60 182 DOI: 10.1119/1.16940
[8]
Uffink J 1993 Am. J. Phys. 61 935 DOI: 10.1119/1.17368
[9]
Brody D C 2003 J. Phys. A: Math. Gen. 36 5587 DOI: 10.1088/0305-4470/36/20/314
[10]
Giovannetti V, Lloyd S, Maccone L 2003 Phys. Rev. A 67 052109 DOI: 10.1103/PhysRevA.67.052109
[11]
Giovannetti V, Lloyd S, Maccone L 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S807 DOI: 10.1088/1464-4266/6/8/028
[12]
Bures D J C 1969 Trans. Am. Math. Soc. 135 199 DOI: 10.1090/S0002-9947-1969-0236719-2
[13]
Kieu T D 2019 Proc. R. Soc. Lond A 475 20190148 DOI: 10.1098/rspa.2019.0148
[14]
Farhi E, Goldstone J, Gutmann S, Sipser M 2000 arXiv:quant-ph/0001106v1 [quant-ph]
[15]
Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D 2001 Science 292 472 DOI: 10.1126/science.1057726
[16]
Grover L K 1997 Phys. Rev. Lett. 79 325 DOI: 10.1103/PhysRevLett.79.325
[17]
Okuyama M, Ohzeki M 2018 arXiv:1806.09040 [quant-ph]
[18]
Okada S, Ohzeki M, Tanaka K 2019 J. Phys. Soc. Jpn. 88 024803 DOI: 10.7566/JPSJ.88.024803
[19]
Farhi E, Gutmann S 1998 Phys. Rev. A 57 2403 DOI: 10.1103/PhysRevA.57.2403
[20]
Roland J, Cerf N J 2002 Phys. Rev. A 65 042308 DOI: 10.1103/PhysRevA.65.042308
[21]
Bender C M, Brody D C, Jones H F, Meister B K 2007 Phys. Rev. Lett. 98 040403 DOI: 10.1103/PhysRevLett.98.040403
[22]
Anandan J, Aharonov Y 1990 Phys. Rev. Lett. 65 1697 DOI: 10.1103/PhysRevLett.65.1697
[23]
Andrecut M, Ali M K 2004 Int. J. Theor. Phys. 43 969 DOI: 10.1023/B:IJTP.0000048594.07696.e5
[24]
Saurya D, Randy K, Gabor K 2003 J. Phys. A: Math. Gen. 36 2839 DOI: 10.1088/0305-4470/36/11/313
[25]
Galve F, Lutz E 2009 Phys. Rev. A 79 055804 DOI: 10.1103/PhysRevA.79.055804
[26]
Sebastian D, Eric L 2008 Phys. Rev. E 77 021128 DOI: 10.1103/PhysRevE.77.021128
[27]
Dominik S W, Sarang G, Michael K, Norman Y Y, Mikhail D L 2016 Phys. Rev. Lett. 117 150501 DOI: 10.1103/PhysRevLett.117.150501
[28]
Kaneko K, Nishimori H 2015 J. Phys. Soc. Jpn. 84 094001 DOI: 10.7566/JPSJ.84.094001
[29]
Hu F, Wang B N, Wang N, Wang C 2019 Quantum Engineering 1 e12 DOI: 10.1002/que2.12
[30]
Zhang Y, Ni Q 2020 Quantum Engineering 2 e34 DOI: 10.1002/que2.34
[31]
Li F G, Bao W, Zhang S, Wang X, Huang H L, Li T, Ma B W 2018 Chin. Phys. B 27 010308 DOI: 10.1088/1674-1056/27/1/010308
[32]
Zhang S, Duan Q H, Li T, Fu X Q, Huang H L, Wang X, Bao W S 2020 Chin. Phys. B 29 010308 DOI: 10.1088/1674-1056/ab5f02
[33]
Sun J, Lu S 2018 Chin. Phys. B 27 110306 DOI: 10.1088/1674-1056/27/11/110306
[34]
Carlini A, Hosoya A, Koike T, Okudaira Y 2006 Phys. Rev. Lett. 96 060503 DOI: 10.1103/PhysRevLett.96.060503
[35]
Gyongyosi L 2020 Quantum Engineering 2 e30 DOI: 10.1002/que2.30
[36]
Adler R J, Santiago D I 1999 Mod. Phys. Lett. A 14 1371 DOI: 10.1142/S0217732399001462
[37]
Scardigli F 1999 Phys. Lett. B 452 39 DOI: 10.1016/S0370-2693(99)00167-7
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[6] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[7] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[10] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
[11] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[12] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
[13] Quantum speed limits for Bell-diagonal states
Han Wei (韩伟), Jiang Ke-Xia (江克侠), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(12): 120304.
No Suggested Reading articles found!