INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar |
Pei Shen(沈培)1,2, Ying Wang(王颖)1,†, Xing-Ji Li(李兴冀)3, Jian-Qun Yang(杨剑群)3, and Fei Cao(曹菲)1 |
1 The School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China; 2 The School of Mechanical and Electronic Engineering, Pingxiang University, Pingxiang 337055, China; 3 The National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology, Harbin 150080, China |
|
|
Abstract A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate (SG), and p-type pillar (p-pillar) surrounded thick oxide shielding region (GSDP-TMOS) is investigated by Silvaco TCAD simulations. The source-connected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate-drain charge ($Q_{\rm gd,sp}$) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage ($BV$). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance ($R_{\rm on,sp}$) becomes smaller. In the end, comparing with the bottom p$^{+}$ shielded trench MOSFET (GP-TMOS), the Baliga figure of merit (BFOM, $BV^{2}/R_{\rm on,sp}$) is increased by 169.6%, and the high-frequency figure of merit (HF-FOM, $R_{\rm on,sp}\times Q_{\rm gd,sp}$) is improved by 310%, respectively.
|
Received: 16 August 2022
Revised: 08 October 2022
Accepted manuscript online: 10 October 2022
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Research and Development Program for Major Research Instruments of China (Grant No. 62027814), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB214047). |
Corresponding Authors:
Ying Wang
E-mail: wangying7711@yahoo.com
|
Cite this article:
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲) Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar 2023 Chin. Phys. B 32 058501
|
[1] Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W 2002 IEEE T. Electron Dev. 49 658 [2] She X, Huang A Q, Lucía Ó and Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193 [3] Chen Z, Yao Y, Boroyevich D, Ngo K D T, Mattavelli P and Rajashekara K 2014 IEEE Trans. Power Electron. 29 2307 [4] Kimoto T and Cooper J A 2014 Fundamentals Silicon Carbide Technology: Growth, Characterization, Devices, Applications (Singapore: Wiley) pp. 223-255 [5] Hamada K, Nagao M, Ajioka M and Kawai F 2015 IEEE T. Electron Dev. 62 278 [6] Hazra S, De A, Cheng L, Palmour J, Schupbach M, Hull B A, Allen S and Bhattacharya S 2016 IEEE Trans. Power Electron. 31 4742 [7] Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P and Kawaguchi Y 2017 IEEE T. Electron Dev. 64 674 [8] Zhou X, Yue R, Zhang J, Dai G, Li J and Wang Y 2017 IEEE T. Electron Dev. 64 4568 [9] Li Y, Cooper J A and Capano M A 2002 IEEE T. Electron Dev. 49 972 [10] Kagawa Y, Fujiwara N, Sugawara K, Tanaka R, Fukui Y, Yamamoto Y, Miura N, Imaizumi M, Nakata S and Yamakawa S 2014 Mater. Sci. Forum 778-780 919 [11] Tan J, Cooper J A and Melloch M R 1998 IEEE Electr. Device L. 19 487 [12] Harada S, Kobayashi Y, Ariyoshi K, Kojima T, Senzaki J, Tanaka Y and Okumura H 2016 IEEE Electron. Dev. Lett. 37 314 [13] Fu H, Wei J, Wei Z, Liu S, Ni L, Yang Z and Sun W 2021 IEEE T. Electron Dev. 68 4550 [14] Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H and Yokotsuji Y 2011 Proceedings of the International Electron Devices Meeting, December 5-7, 2011, Washington, DC, USA, p. 599 [15] Song Q, Yang S, Tang G, Han C, Zhang Y, Tang X, Zhang Y and Zhang Y 2016 IEEE Electron. Dev. Lett. 37 463 [16] Peters D, Basler T, Zippelius B, Aichinger T, Bergner W, Esteve R, Kueck D and Siemieniec R 2017 Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, May 16-18, 2017, Nuremberg, Germany, p. 1 [17] Yang H, Hu S, Ran S, Wang J and Liu T 2020 IEEE J. Electron. Dev. Soc. 8 1335 [18] Wei J, Zhang M, Jiang H, Wang H and Chen K J 2017 IEEE T. Electron. Dev. 64 2592 [19] Yang T, Wang Y and Yue R 2020 IEEE T. Electron. Dev. 67 3685 [20] Gangi H, Taguchi Y, Nakata K, Nemoto H, Kobayashi Y, Inokuchi T, Takao K and Kobayashi K 2021 Proceedings of the 33rd International Symposium on Power Semiconductor Devices and ICs, May 30-June 3, 2021, Nagoya, Japan, p. 151 [21] Kobayashi K, Kato H, Aida K, Goryu A and Nishiwaki T 2021 Proceedings of the 33rd International Symposium on Power Semiconductor Devices and ICs, May 30-June 3, 2021, Nagoya, Japan, p. 191 [22] Kong M, Huang K, Guo J X, Zhang B K, Wu H J, Liu C and Wang B 2021 IEEE T. Electron. Dev. 68 4022 [23] Zhang J, Chen Z, Tu Y, Deng X and Zhang B 2021 IEEE J. Electron. Dev. Soc. 9 713 [24] Cha K, Yoon J, Cheon J and Kim K 2021 Proceedings of the International Conference on Electronics, Information, and Communication, January 31-February 3, 2021, p. 1 [25] Han K and Baliga B J 2019 IEEE Electron. Dev. Lett. 40 1163 [26] Agarwal A, Han K and Baliga B J 2018 Proceedings of the IEEE 6th Workshop on Wide Bandgap Power Devices and Applications, October 31-November 2, 2018, Atlanta, GA, USA, p. 125 [27] Takaya H, Morimoto J, Hamada K, Yamamoto T, Sakakibara J, Watanabe Y and Soejima N 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices & IC's, May 26-30, 2013, Kanazawa, Japan, p. 43 [28] Ogawa T, Saito W and Nishizawa S 2020 IEEE Electron. Dev. Lett. 41 1063 [29] Wu L, Huang Y, Wu Y, Zhu L and Lei B 2019 Mater. Sci. Semicond. Process. 101 272 [30] Wu C, Ridley R, Dolny G, Grebs T, Knoedler C, Suliman S, Venkataraman B, Awadelkarim, O and Ruzyllo J 2002 Proceedings of the 14th International Symposium on Power Semiconductor, Devices and Ics, June 7, 2002, Sante Fe, NM, USA, p. 149 [31] Darwish M, Yue C, Lui K, Giles F, Chan B, Chen K, Pattanayak D, Chen Q, Terrill K and Owyang K 2003 Proceedings of the 15th International Symposium on Power Semiconductor Devices and ICs, April 14-17, 2003, Cambridge, UK, p. 24 [32] Okada M, Kyogoku S, Kumazawa T, Saito J, Morimoto T, Takei M and Harada S 2020 Proceedings of the 32nd International Symposium on Power Semiconductor Devices and ICs, September 13-18, 2020, Vienna, Austria, p. 70 [33] Ebihara Y, Ichimura A, Mitani S, Noborio M, Takeuchi Y, Mizuno S, Yamamoto T and Tsuruta K 2018 Proceedings of the 30th International Symposium on Power Semiconductor Devices and ICs, May 13-17, 2018, Chicago, IL, USA, p. 44 [34] ATLAS User's Manual, Silvaco, Santa Clara, CA, USA, 2016 [35] Wang Y, Tian K, Hao Y, Yu C H and Liu Y J 2015 IEEE T. Electron. Dev. 62 2774 [36] Luo H, Wang L, Wang S, Tan C, Zheng K, Zhang G, Tao L and Chen X 2019 IEEE T. Electron. Dev. 66 2295 [37] Lades M, Kaindl W, Kaminski N, Niemann E and Wachutka G 1999 IEEE T. Electron. Dev. 46 598 [38] Yu H, Liang S, Liu H, Wang J and Shen Z J 2021 IEEE T. Electron. Dev. 68 4571 [39] Yang T, Wang Y and Yue R 2020 Superlattice. Microst. 140 106466 [40] He Q Y, Luo X R, Liao T, Wei J. Deng G Q, Sun J F and Yang F 2018 Superlattice. Microst. 125 58 [41] Boige F, Richardeau F, Lefebvre S, Blaquiére J M, Guibaud G and Bourennane A 2018 Microelectron. Rel. 88-90 598 [42] J Lu, Liu J W, Tian X L, Chen H, Tang Y D, Bai Y, Li C Z and Liu X Y 2020 IEEE T. Electron. Dev. 67 3698 [43] Yu C H, Wang Y, Bao M T, Li X J, Yang J Q and Tang Z H 2021 IEEE T. Electron. Dev. 68 5034 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|