INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer |
Yi-Wei Cao(曹一伟)1, Quan-Jiang Lv(吕全江)1,†, Tian-Peng Yang(杨天鹏)2,3, Ting-Ting Mi(米亭亭)3, Xiao-Wen Wang(王小文)3, Wei Liu(刘伟)3, and Jun-Lin Liu(刘军林)1,‡ |
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 2 EpiTop Optoelectronic Co., Ltd, Ma'anshan 243000, China; 3 Ma'anshan Jason Semiconductor Co., Ltd, Ma'anshan 243000, China |
|
|
Abstract We investigate the polarization-induced doping in the gradient variation of Al composition in the p-Al$_{0.75}$Ga$_{0.25}$N/Al$_{x}$Ga$_{1-x}$N hole injection layer (HIL) for deep ultraviolet light-emitting diodes (DUV-LEDs) with an ultra-thin p-GaN (4 nm) ohmic contact layer capable of emitting 277 nm. The experimental results show that the external quantum efficiency (EQE) and wall plug efficiency (WPE) of the structure graded from 0.75 to 0.55 in the HIL reach 5.49% and 5.04%, which are improved significantly by 182% and 209%, respectively, compared with the structure graded from 0.75 to 0.45, exhibiting a tremendous improvement. Both theoretical speculations and simulation results support that the larger the difference between 0.75 and $x$ in the HIL, the higher the hole concentration that should be induced; thus, the DUV-LED has a higher internal quantum efficiency (IQE). Meanwhile, as the value of $x$ decreases, the absorption of the DUV light emitted from the active region by the HIL is enhanced, reducing the light extraction efficiency (LEE). The IQE and LEE together affect the EQE performance of DUV-LEDs. To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition, the Al composition in the HIL was optimized through theoretical calculations and experiments.
|
Received: 27 September 2022
Revised: 21 October 2022
Accepted manuscript online: 27 October 2022
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62104085) and the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. JSSCTD202146). |
Corresponding Authors:
Quan-Jiang Lv, Jun-Lin Liu
E-mail: lvquanjiang@ujs.edu.cn;liujunlin@ujs.edu.cn
|
Cite this article:
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林) Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer 2023 Chin. Phys. B 32 058503
|
[1] Kneissl M, Seong T Y, Han J and Amano H 2019 Nat. Photon. 13 233 [2] Wang T Y, Lai W C, Sie S Y, Chang S P, Wu Y R, Chiou Y Z, Kuo C H and Sheu J K 2020 Appl. Phys. Lett. 117 251101 [3] Sun Y H, Xu F J, Xie N, Wang J M, Zhang N, Lang J, Liu B Y, Fang X Z, Wang L B, Ge W K, Kang X N, Qin Z X, Yang X L, Wang X Q and Shen B 2020 Appl. Phys. Lett. 116 212102 [4] Li Y, Ge M, Wang M, Zhu Y and Guo X 2022 Chin. Phys. B 31 077801 [5] Raeiszadeh M and Adeli B 2020 ACS Photonics 7 2941 [6] Park J S, Kim J K, Cho J and Seong T Y 2017 ECS J. Solid State Sci. Technol. 6 Q42 [7] Lobo-Ploch N, Mehnke F, Sulmoni L, Cho H K, Guttmann M, Glaab J, Hilbrich K, Wernicke T, Einfeldt S and Kneissl M 2020 Appl. Phys. Lett. 117 111102 [8] Zhang C, Hui-Qing S, Li X N, Sun H, Fan X C, Zhang Z D and Guo Z Y 2016 Chin. Phys. B 25 028501 [9] Djavid M and Mi Z 2016 Appl. Phys. Lett. 108 051102 [10] Lang J, Xu F J, Ge W K, Liu B Y, Zhang N, Sun Y H, Wang M X, Xie N, Fang X Z, Kang X N, Qin Z X, Yang X L, Wang X Q and Shen B 2019 Appl. Phys. Lett. 114 172105 [11] Liu D, Cho S J, Park J, Gong J, Seo J H, Dalmau R, Zhao D, Kim K, Kim M, Kalapala A R K, Albrecht J D, Zhou W, Moody B and Ma Z 2018 Appl. Phys. Lett. 113 011111 [12] Bharadwaj S, Islam S M, Nomoto K, Protasenko V, Chaney A, Xing H and Jena D 2019 Appl. Phys. Lett. 114 113501 [13] Jiang K, Sun X, Shi Z, Zang H, Ben J, Deng H X and Li D 2021 Light Sci Appl 10 69 [14] Chen Y, Wu H, Han E, Yue G, Chen Z, Wu Z, Wang G and Jiang H 2015 Appl. Phys. Lett. 106 162102 [15] Li G, Wang L Y, Song W D, Jiang J, Luo X J, Guo J Q, He L F, Zhang K, Wu Q B and Li S T 2019 Chin. Phys. B 28 058502 [16] Liang Y H and Towe E 2018 Appl. Phys. Rev. 5 011107 [17] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60 [18] Malik S, Usman M, Khan M A and Hirayama H 2021 J. Mater. Chem. C 9 16545 [19] Xu M, Zhou Q, Zhang H, Wang H and Zhang X 2016 Superlattices Microstruct. 94 25 [20] Zhang D, Chu C, Tian K, Kou J, Bi W, Zhang Y and Zhang Z H 2020 AIP Adv. 10 065032 [21] Ni R, Yu Z, Liu Z, Zhang L, Jia L and Zhang Y 2020 IEEE Photonics Technol. Lett. 32 971 [22] Huang C Y, Tsai C L, Huang C Y, Yang R Y, Wu Y S, Yen H W and Fu Y K 2020 Appl. Phys. Lett. 117 261102 [23] Kneissl M 2016 III-Nitride Ultraviolet Emitters (Switzerland: Springer) [24] Chee K W A, Guo W, Wang J R, Wang Y, Chen Y E and Ye J 2018 Mater. Des. 160 661 [25] Sakowski K, Marcinkowski L, Krukowski S, Grzanka S and Litwin-Staszewska E 2012 J. Appl. Phys. 111 123115 [26] Pandey A, Shin W J, Liu X and Mi Z 2019 Opt. Express 27 A738 [27] Manikandan M, Nirmal D, Ajayan J, Arivazhagan L, Prajoon P and Dhivyasri G 2020 Opt. Quantum Electron. 52 513 [28] Trivellin N, Monti D, Piva F, Buffolo M, De Santi C, Zanoni E, Meneghesso G and Meneghini M 2019 Jpn. J. Appl. Phys. 58 SCCC19 [29] Zhang L, Ding K, Yan J C, Wang J X, Zeng Y P, Wei T B, Li Y Y, Sun B J, Duan R F and Li J M 2010 Appl. Phys. Lett. 97 062103 [30] Jin-Wei S, Shi-Hao G, Lin C S, Jinn-Kong S, Kuo-Hua C, Lai W C, Kuo C H, Tun C J and Jen-Inn C 2009 IEEE J. Sel. Top. Quantum Electron. 15 1292 [31] Yu H, Ren Z, Zhang H, Dai J, Chen C, Long S and Sun H 2019 Opt. Express 27 A1544 [32] Jo M, Maeda N and Hirayama H 2016 Appl. Phys. Express 9 012102 [33] Pelá R R, Caetano C, Marques M, Ferreira L G, Furthmüller J and Teles L K 2011 Appl. Phys. Lett. 98 151907 [34] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 87 242104 [35] Beladjal K, Kadri A, Zitouni K and Mimouni K 2021 Superlattices Microstruct. 155 106901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|