Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058503    DOI: 10.1088/1674-1056/ac9de7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer

Yi-Wei Cao(曹一伟)1, Quan-Jiang Lv(吕全江)1,†, Tian-Peng Yang(杨天鹏)2,3, Ting-Ting Mi(米亭亭)3, Xiao-Wen Wang(王小文)3, Wei Liu(刘伟)3, and Jun-Lin Liu(刘军林)1,‡
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
2 EpiTop Optoelectronic Co., Ltd, Ma'anshan 243000, China;
3 Ma'anshan Jason Semiconductor Co., Ltd, Ma'anshan 243000, China
Abstract  We investigate the polarization-induced doping in the gradient variation of Al composition in the p-Al$_{0.75}$Ga$_{0.25}$N/Al$_{x}$Ga$_{1-x}$N hole injection layer (HIL) for deep ultraviolet light-emitting diodes (DUV-LEDs) with an ultra-thin p-GaN (4 nm) ohmic contact layer capable of emitting 277 nm. The experimental results show that the external quantum efficiency (EQE) and wall plug efficiency (WPE) of the structure graded from 0.75 to 0.55 in the HIL reach 5.49% and 5.04%, which are improved significantly by 182% and 209%, respectively, compared with the structure graded from 0.75 to 0.45, exhibiting a tremendous improvement. Both theoretical speculations and simulation results support that the larger the difference between 0.75 and $x$ in the HIL, the higher the hole concentration that should be induced; thus, the DUV-LED has a higher internal quantum efficiency (IQE). Meanwhile, as the value of $x$ decreases, the absorption of the DUV light emitted from the active region by the HIL is enhanced, reducing the light extraction efficiency (LEE). The IQE and LEE together affect the EQE performance of DUV-LEDs. To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition, the Al composition in the HIL was optimized through theoretical calculations and experiments.
Keywords:  deep ultraviolet light-emitting diode (DUV-LED)      polarization-induced doping      AlGaN      light extraction efficiency  
Received:  27 September 2022      Revised:  21 October 2022      Accepted manuscript online:  27 October 2022
PACS:  85.60.Jb (Light-emitting devices)  
  73.61.Ey (III-V semiconductors)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62104085) and the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. JSSCTD202146).
Corresponding Authors:  Quan-Jiang Lv, Jun-Lin Liu     E-mail:  lvquanjiang@ujs.edu.cn;liujunlin@ujs.edu.cn

Cite this article: 

Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林) Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer 2023 Chin. Phys. B 32 058503

[1] Kneissl M, Seong T Y, Han J and Amano H 2019 Nat. Photon. 13 233
[2] Wang T Y, Lai W C, Sie S Y, Chang S P, Wu Y R, Chiou Y Z, Kuo C H and Sheu J K 2020 Appl. Phys. Lett. 117 251101
[3] Sun Y H, Xu F J, Xie N, Wang J M, Zhang N, Lang J, Liu B Y, Fang X Z, Wang L B, Ge W K, Kang X N, Qin Z X, Yang X L, Wang X Q and Shen B 2020 Appl. Phys. Lett. 116 212102
[4] Li Y, Ge M, Wang M, Zhu Y and Guo X 2022 Chin. Phys. B 31 077801
[5] Raeiszadeh M and Adeli B 2020 ACS Photonics 7 2941
[6] Park J S, Kim J K, Cho J and Seong T Y 2017 ECS J. Solid State Sci. Technol. 6 Q42
[7] Lobo-Ploch N, Mehnke F, Sulmoni L, Cho H K, Guttmann M, Glaab J, Hilbrich K, Wernicke T, Einfeldt S and Kneissl M 2020 Appl. Phys. Lett. 117 111102
[8] Zhang C, Hui-Qing S, Li X N, Sun H, Fan X C, Zhang Z D and Guo Z Y 2016 Chin. Phys. B 25 028501
[9] Djavid M and Mi Z 2016 Appl. Phys. Lett. 108 051102
[10] Lang J, Xu F J, Ge W K, Liu B Y, Zhang N, Sun Y H, Wang M X, Xie N, Fang X Z, Kang X N, Qin Z X, Yang X L, Wang X Q and Shen B 2019 Appl. Phys. Lett. 114 172105
[11] Liu D, Cho S J, Park J, Gong J, Seo J H, Dalmau R, Zhao D, Kim K, Kim M, Kalapala A R K, Albrecht J D, Zhou W, Moody B and Ma Z 2018 Appl. Phys. Lett. 113 011111
[12] Bharadwaj S, Islam S M, Nomoto K, Protasenko V, Chaney A, Xing H and Jena D 2019 Appl. Phys. Lett. 114 113501
[13] Jiang K, Sun X, Shi Z, Zang H, Ben J, Deng H X and Li D 2021 Light Sci Appl 10 69
[14] Chen Y, Wu H, Han E, Yue G, Chen Z, Wu Z, Wang G and Jiang H 2015 Appl. Phys. Lett. 106 162102
[15] Li G, Wang L Y, Song W D, Jiang J, Luo X J, Guo J Q, He L F, Zhang K, Wu Q B and Li S T 2019 Chin. Phys. B 28 058502
[16] Liang Y H and Towe E 2018 Appl. Phys. Rev. 5 011107
[17] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
[18] Malik S, Usman M, Khan M A and Hirayama H 2021 J. Mater. Chem. C 9 16545
[19] Xu M, Zhou Q, Zhang H, Wang H and Zhang X 2016 Superlattices Microstruct. 94 25
[20] Zhang D, Chu C, Tian K, Kou J, Bi W, Zhang Y and Zhang Z H 2020 AIP Adv. 10 065032
[21] Ni R, Yu Z, Liu Z, Zhang L, Jia L and Zhang Y 2020 IEEE Photonics Technol. Lett. 32 971
[22] Huang C Y, Tsai C L, Huang C Y, Yang R Y, Wu Y S, Yen H W and Fu Y K 2020 Appl. Phys. Lett. 117 261102
[23] Kneissl M 2016 III-Nitride Ultraviolet Emitters (Switzerland: Springer)
[24] Chee K W A, Guo W, Wang J R, Wang Y, Chen Y E and Ye J 2018 Mater. Des. 160 661
[25] Sakowski K, Marcinkowski L, Krukowski S, Grzanka S and Litwin-Staszewska E 2012 J. Appl. Phys. 111 123115
[26] Pandey A, Shin W J, Liu X and Mi Z 2019 Opt. Express 27 A738
[27] Manikandan M, Nirmal D, Ajayan J, Arivazhagan L, Prajoon P and Dhivyasri G 2020 Opt. Quantum Electron. 52 513
[28] Trivellin N, Monti D, Piva F, Buffolo M, De Santi C, Zanoni E, Meneghesso G and Meneghini M 2019 Jpn. J. Appl. Phys. 58 SCCC19
[29] Zhang L, Ding K, Yan J C, Wang J X, Zeng Y P, Wei T B, Li Y Y, Sun B J, Duan R F and Li J M 2010 Appl. Phys. Lett. 97 062103
[30] Jin-Wei S, Shi-Hao G, Lin C S, Jinn-Kong S, Kuo-Hua C, Lai W C, Kuo C H, Tun C J and Jen-Inn C 2009 IEEE J. Sel. Top. Quantum Electron. 15 1292
[31] Yu H, Ren Z, Zhang H, Dai J, Chen C, Long S and Sun H 2019 Opt. Express 27 A1544
[32] Jo M, Maeda N and Hirayama H 2016 Appl. Phys. Express 9 012102
[33] Pelá R R, Caetano C, Marques M, Ferreira L G, Furthmüller J and Teles L K 2011 Appl. Phys. Lett. 98 151907
[34] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 87 242104
[35] Beladjal K, Kadri A, Zitouni K and Mimouni K 2021 Superlattices Microstruct. 155 106901
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[13] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
No Suggested Reading articles found!