CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnonic band-pass and band-stop filters with structurally modulated waveguides |
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜)† |
Jiangsu Key Laboratory of Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China |
|
|
Abstract Magnonics is a fascinating and emerging field, which mainly studies processing information with spin waves. Magnonic devices with in-plane magnetization have recently been realized. Because of the isotropic propagation, magnonic devices based on perpendicular magnetization are attracting extensive interest. Here, we numerically demonstrate two magnonic filters with out-of-plane magnetization using micromagnetic simulations. The band-pass and the band-stop functions have been realized in two structurally modulated waveguides, respectively. The intensity of spin waves is manipulated when they arrive at the uniformly/non-uniformly magnetized modulators, which results in the variation of transmission coefficients. It is found that the proposed filters can work at multiple frequencies, which can be further adjusted by the external magnetic field. Our designed magnonic devices with Néel-type skyrmion could promote the development of spin wave computing using spin textures.
|
Received: 17 May 2022
Revised: 03 August 2022
Accepted manuscript online: 19 August 2022
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
85.70.-w
|
(Magnetic devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074189 and 11704191). |
Corresponding Authors:
Fu-Sheng Ma
E-mail: phymafs@njnu.edu.cn
|
Cite this article:
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜) Magnonic band-pass and band-stop filters with structurally modulated waveguides 2023 Chin. Phys. B 32 067503
|
[1] Bohr M T and Young I A2017 IEEE Micro 37 20 [2] Track E, Forbes N and Strawn G2017 Comput. Sci. Eng. 19 4 [3] Guo P F, Yang L T, Yang Y, Fan L, Han G Q, Samudra G S and Yeo Y C2009 IEEE Electron Device Lett. 30 981 [4] Schwierz F2010 Nat. Nanotechnol. 5 487 [5] Manipatruni S, Nikonov D E and Young I A2018 Nat. Phys. 14 338 [6] Nikonov D E and Young I A2013 Proc. IEEE 101 2498 [7] Krivosik P and Patton C E2010 Phys. Rev. B 82 184428 [8] Kruglyak V V., Demokritov S O and Grundler D2010 J. Phys. D: Appl. Phys. 43 264001 [9] Chumak A V and Schultheiss H2017 J. Phys. D: Appl. Phys. 50 300201 [10] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E2010 Nature 464 262 [11] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R2011 Nat. Photonics 5 31 [12] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B2005 Appl. Phys. Lett. 87 153501 [13] Louis S, Lisenkov I, Nikitov S, Tyberkevych V and Slavin A2016 AIP Adv. 6 065103 [14] Vedmedenko E Y, Kawakami R K, Sheka D D, Gambardella P, Kirilyuk A, Hirohata A, Binek C, Chubykalo-Fesenko O, Sanvito S, Kirby B J, Grollier J, Everschor-Sitte K, Kampfrath T, You C Y and Berger A2020 J. Phys. D: Appl. Phys. 53 453001 [15] Chumak A V., Vasyuchka V I, Serga A A and Hillebrands B2015 Nat. Phys. 11 453 [16] Sheng L T, Chen J L and Yu H M 2021 Mater. China 40 939 [17] Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B and Chumak A V2018 Sci. Adv. 4 e1701517 [18] Wang Q, Chumak A V and Pirro P 2021 Nat. Commun. 12 2636 [19] Wang Q, Hamadeh A, Verba R, Lomakin V, Mohseni M, Hillebrands B, Chumak A V. and Pirro P2020 npj Comput. Mater. 6 192 [20] Chumak A V, Serga A A and Hillebrands B2014 Nat. Commun. 5 4700 [21] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P2008 Appl. Phys. Lett. 92 022505 [22] Jamali M, Kwon J H, Seo S M, Lee K J and Yang H2013 Sci. Rep. 3 3160 [23] Au Y, Dvornik M, Dmytriiev O and Kruglyak V V2012 Appl. Phys. Lett. 100 172408 [24] Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana S D, Dobrovolskiy O V, Brächer T, Pirro P and Chumak A V2020 Nat. Electron. 3 765 [25] Talmelli G, Devolder T, Träger N, Förster J, Wintz S, Weigand M, Stoll H, Heyns M, Schütz G, Radu I P, Gräfe J, Ciubotaru F and Adelmann C2020 Sci. Adv. 6 eabb4042 [26] Fischer T, Kewenig M, Bozhko D A, Serga A A, Syvorotka I I, Ciubotaru F, Adelmann C, Hillebrands B and Chumak A V2017 Appl. Phys. Lett. 110 152401 [27] Nikitin A A, Ustinov A B, Semenov A A, Chumak A V, Serga A A, Vasyuchka V I, Lähderanta E, Kalinikos B A and Hillebrands B2015 Appl. Phys. Lett. 106 102405 [28] Chen X X, Wang Q, Zhang H W and Zhong Z Y 2015 Micronanoelectronic Technology 52 485 [29] Zhang Z K, Jin L C, Wen T L, Liao Y L, Tang X L, Zhang H W and Zhong Z Y2020 Sci. Sin. Informationis 50 67 [30] Heussner F, Talmelli G, Geilen M, Heinz B, Brächer T, Meyer T, Ciubotaru F, Adelmann C, Yamamoto K, Serga A A, Hillebrands B and Pirro P2020 Phys. Status Solidi -Rapid Res. Lett. 14 1900695 [31] Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Stiles M D and Grollier J2017 Nature 547 428 [32] Brächer T and Pirro P2018 J. Appl. Phys. 124 152119 [33] Belmeguenai M, Adam J P, Roussigné Y, Eimer S, Devolder T, Kim J Von, Cherif S M, Stashkevich A and Thiaville A2015 Phys. Rev. B 91 180405 [34] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Qiu X and Yang H2015 Appl. Phys. Lett. 106 052403 [35] Bisero D2020 Magnetochemistry 6 40 [36] Jibiki Y, Goto M, Tamura E, Cho J, Miki S, Ishikawa R, Nomura H, Srivastava T, Lim W, Auffret S, Baraduc C, Bea H and Suzuki Y2020 Appl. Phys. Lett. 177 082402 [37] Vansteenkiste A and De Wiele B Van2011 J. Magn. Magn. Mater. 323 2585 [38] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Qiu X and Yang H2015 Appl. Phys. Lett. 106 052403 [39] Zhang V L, Hou C G, Di K, Lim H S, Ng S C, Pollard S D, Yang H and Kuok M H2017 AIP Adv. 7 055212 [40] Ma F S, Lim H S, Wang Z K, Piramanayagam S N, Ng S C and Kuok M H2011 Appl. Phys. Lett. 98 153107 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|