|
|
Transition frequencies between 2S and 2P states of lithium-like ions |
Liming Wang(王黎明)1,†, Tongtong Liu(刘仝彤)1, Weiqing Yang(杨为青)1, and Zong-Chao Yan2 |
1 School of Physics, Henan Normal University, Xinxiang 453007, China; 2 Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3 B 5A3, Canada |
|
|
Abstract The Schrödinger equation for the $2$S and $2$P states of the lithium-like ions $Z=5$-7, 9-10 is solved by using the Rayleigh-Ritz variational method in Hylleraas coordinates. The leading-order relativistic and QED corrections are calculated perturbatively and higher-order corrections are estimated. The transition frequencies between the $2{\rm S}_{1/2}$ and $2{\rm P}_J$ ($J=1/2, 3/2$) states are determined and compared with experimental and other theoretical results. Specifically, isotope shifts are also calculated for B$^{2+}$.
|
Received: 13 November 2022
Revised: 07 December 2022
Accepted manuscript online: 21 December 2022
|
PACS:
|
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
|
31.30.jf
|
(QED calculations of level energies, transition frequencies, fine structure intervals (radiative corrections, self-energy, vacuum polarization, etc.))
|
|
31.15.xt
|
(Variational techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774080). ZCY was supported by NSERC of Canada. The computing facility at SHARCnet of Canada is gratefully acknowledged. We thank Yongbo Tang for useful discussions. |
Corresponding Authors:
Liming Wang
E-mail: wlm@whu.edu.cn
|
Cite this article:
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan Transition frequencies between 2S and 2P states of lithium-like ions 2023 Chin. Phys. B 32 033102
|
[1] Drake G W F 2002 Can. J. Phys. 80 1195 [2] Yerokhin V A and Pachucki K 2010 Phys. Rev. A 81 022507 [3] Lindgren I 1984 Rep. Prog. Phys. 47 345 [4] Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 2764 [5] Lindgren I 1985 Phys. Rev. A 31 1273 [6] Blundell S A, Johnson W R, Liu Z W and Sapirstein J 1989 Phys. Rev. A 40 2233 [7] Chen M H, Cheng K T, Johnson W R and Sapirstein J 1995 Phys. Rev. A 52 266 [8] Indelicato P and Desclaux J P 1990 Phys. Rev. A 42 5139 [9] Kim Y K, Baik D H and Indelicato P 1991 Phys. Rev. A 44 148 [10] Johnson W R, Liu Z W and Sapirstein J 1996 Data Nucl. Data Tables 64 279 [11] Yerokhin V A, Surzhykov A and Müller A 2017 Phys. Rev. A 96 042505 [12] Drake G W F 1979 Phys. Rev. A 19 1387 [13] Yerokhin V A, Puchalski M and Pachucki K 2020 Phys. Rev. A 102 042816 [14] Edlén B 1983 Phys. Scr. 28 51 [15] Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L and Wu H 2020 Phys. Rev. Lett. 124 063002 [16] Sánchez R, Záková M, Andjelkovic Z, Bushaw B A, Dasgupta K, Ewald G, Geppert C, Kluge H-J, Krämer J, Nothhelfer M, Tiedemann D, Winters D F A and Nörtershäuser W 2009 New J. Phys. 11 073016 [17] Nörtershäuser W, Geppert C, Krieger A, Pachucki K, Puchalski M, Blaum K, Bissell M L, Frömmgen N, Hammen M, Kowalska M, Krämer J, Kreim K, Neugart R, Neyens G, Sánchez R, and Yordanov D T 2015 Phys. Rev. Lett. 115 033002 [18] Puchalski M and Pachucki K 2014 Phys. Rev. Lett. 113 073004 [19] Wang L M, Li C, Yan Z C and Drake G W F 2017 Phys. Rev. A 95 032504 [20] Earwood W P and Davis S R 2021 J. Phys. B: At. Mol. Opt. Phys. 54 215001 [21] Wang L M and Yan Z C 2019 Phys. Rev. A 100 032505 [22] Wang L M and Yan Z C 2021 Phys. Rev. A 104 029903(E) [23] Litzén U and Kling R 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L933 [24] Griesmann U and Kling R 2000 Astrophys. J. 536 L113 [25] Winzen D, Hannen V, Bussmann M, et al. 2021 Sci. Rep. 11 9370 [26] Patkóš V, Yerokhin V A and Pachucki K 2019 Phys. Rev. A 100 042510 [27] Drake G W F, Nörtershäuser W and Yan Z C 2005 Can. J. Phys. 83 311 [28] Puchalski M and Pachucki K 2008 Phys. Rev. A 78 052511 [29] Maaβ B, Hüther T, König K, Krämer J, Krause J, Lovato A, Müller P, Pachucki K, Puchalski M, Roth R,Sánchez R, Sommer F, Wiringa R B and Nörtershäuser W 2019 Phys. Rev. Lett. 122 182501 [30] Burke E W Jr 1955 Phys. Rev. 99 1839 [31] Godefroid M, Fischer C F and Jönsson P 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1079 [32] Tiesinga E, Mohr P J, Newell D B and Taylor B N 2021 Rev. Mod. Phys. 93 025010 [33] Wang M, Huang W J, Kondev F G, Audi G and Naimi S 2021 Chin. Phys. C 45 030003 [34] Angeli I 2004 Atomic Data and Nuclear Data Tables 87 185 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|