CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition |
Shien Li(李世恩)1,2, Zefeng Lin(林泽丰)2,3, Wei Hu(胡卫)2, Dayu Yan(闫大禹)2, Fucong Chen(陈赋聪)2,3, Xinbo Bai(柏欣博)2,3, Beiyi Zhu(朱北沂)2, Jie Yuan(袁洁)2,4, Youguo Shi(石友国)2,3,4, Kui Jin(金魁)2,3,4, Hongming Weng(翁红明)2,3,4, and Haizhong Guo(郭海中)1,† |
1 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract TaAs, the first experimentally discovered Weyl semimetal material, has attracted a lot of attention due to its high carrier mobility, high anisotropy, nonmagnetic properties and strong interaction with light. These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation, thermoelectric devices, and photodetection. For further basic physics studies and potential applications, large-size and high-quality TaAs films are urgently needed. However, it is difficult to grow As-stoichiometry TaAs films due to the volatilization of As during the growth. To solve this problem, we attempted to grow TaAs films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition (PLD). In this work, we found that partial As ions of the GaAs substrate are likely to diffuse into the TaAs films during growth, which was preliminarily confirmed by structural characterization, surface topography and composition analysis. As a result, the As content in the TaAs film was improved and the TaAs phase was achieved. Our work presents an effective method for the fabrication of TaAs films using PLD, enabling possible use of the Weyl semimetal film for functional devices.
|
Received: 09 December 2022
Revised: 20 January 2023
Accepted manuscript online: 06 February 2023
|
PACS:
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0718700), the National Natural Science Foundation of China (Grant No. 12174347), the Synergetic Extreme Condition User Facility (SECUF), and the Center for Materials Genome. |
Corresponding Authors:
Haizhong Guo
E-mail: hguo@zzu.edu.cn
|
Cite this article:
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中) Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition 2023 Chin. Phys. B 32 047103
|
[1] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [2] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 [3] Bernevig B A 2015 Nat. Phys. 11 698 [4] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227 [5] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [6] Huang S, Xu S, Belopolski I, Lee C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M 2015 Nat. Commun. 6 7373 [7] Xu S, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [8] Lv B, Weng H, Fu B, Wang X, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 [9] Xu S, Belopolski I, Sanchez D, et al. 2016 Phys. Rev. Lett. 116 096801 [10] Lv B, Muff S, Qian T, Song Z, Nie S, Xu N, Richard P, Matt C, Plumb N, Zhao L, Chen G, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H and Ding H 2015 Phys. Rev. Lett. 115 217601 [11] Yang L, Liu Z, Sun Y, Peng H, Yang H, Zhang T, Zhou B, Zhang Y, Guo Y, Rahn M, Prabhakaran D, Hussain Z, Mo S, Felser C, Yan B and Chen Y 2015 Nat. Phys. 11 879 [12] Liu Z, Yang L, Sun Y, Zhang T, Peng H, Yang H, Chen C, Zhang Y, Guo Y, Prabhakaran D, Schmidt M, Hussain Z, Mo S, Felser C, Yan B and Chen Y 2016 Nat. Mater. 15 27 [13] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023 [14] Lv B, Xu N, Weng H, Ma J, Richard P, Huang X, Zhao L, Chen G, Matt C, Bisti F, Strocov V, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 [15] Zhang C, Yuan Z, Jiang Q, Tong B, Zhang C, Xie X C and Jia S 2017 Phys. Rev. B 95 085202 [16] Osterhoudt G B, Diebel L K, Gray M J, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P J W, Ran Y and Burch K S 2019 Nat. Mater. 18 471 [17] Chi S, Li Z, Xie Y, Zhao Y, Wang Z, Li L, Yu H, Wang G, Weng H, Zhang H and Wang J 2018 Adv. Mater. 30 1801372 [18] Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y, Zhang W, Su Y, Chen X, Weng H, Kharzeev D E, Liu M and Qi J 2020 Nat. Commun. 11 720 [19] Peng B, Zhang H, Shao H, Lu H, Zhang D W and Zhu H 2016 Nano Energy 30 225 [20] Sankar R, Peramaiyan G, Muthuselvam I P, Xu S, Hasan M Z and Chou F C 2018 J. Phys.: Condens. Matter 30 015803 [21] Li Z, Chen H, Jin S, Gan D, Wang W, Guo L and Chen X 2016 Cryst. Growth Des. 16 1172 [22] Yanez W, Ou Y, Xiao R, Ghosh S, Dwivedi J, Steinebronn E, Richardella A, Mkhoyan K A and Samarth N 2022 Phys. Rev. Appl. 18 054004 [23] Sadowski J, Domagał a J Z, Zajkowska W, Kret S, Seredyński B, Gryglas-Borysiewicz M, Ogorzał ek Z, Bożek R and Pacuski W 2022 Cryst. Growth Des. 22 6039 [24] Sun K, Sun S, Wei L, Guo C, Tian H, Chen G, Yang H and Li J 2017 Chin. Phys. Lett. 34 117203 [25] Sirica N, Tobey R I, Zhao L, Chen G, Xu B, Yang R, Shen B, Yarotski D A, Bowlan P, Trugman S A, Zhu J, Dai Y, Azad A K, Ni N, Qiu X, Taylor A J and Prasankumar R P 2019 Phys. Rev. Lett. 122 197401 [26] Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y and Wang X 2020 Chin. Phys. Lett. 37 017104 [27] Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X, Wang X, Xu Y and Zhang R 2017 Appl. Phys. Lett 111 031906 [28] Han Q and Schmid-Fetzer R 1993 Mater. Sci. Eng. B 17 147 [29] Willerström J O 1984 J. Less-common Met. 99 273 [30] Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 95 [31] Murray J J, Taylor J B, Calvert L D, Wang Y, Gabe E J, Despault J G 1976 J. Less-common Met. 46 311 [32] Zhang C, Xu S, Belopolski I, et al. 2016 Nat. Commun. 7 10735 [33] Han Q and Schmid-Fetzer R 1994 Mater. Sci. Eng. B 22 147 [34] Campos C E M and Pizani P S 2002 Appl. Surf. Sci. 200 111 [35] Zhang S and Northrup J E 1991 Phys. Rev. Lett. 67 2339 [36] Biegelsen D K, Bringans R D, Northrup J E and Swartz L 1990 Phys. Rev. B 41 5701 [37] Chen C, Chang L, Chang E, Chen S and Chang D 2000 Appl. Phys. Lett. 77 3367 [38] Lahav A and Eizenberg M 1984 Appl. Phys. Lett. 45 256 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|