Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098504    DOI: 10.1088/1674-1056/acd9c0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure

Binghui Wang(王冰辉)1,2, Yanhui Xing(邢艳辉)1,†, Shengyuan Dong(董晟园)1, Jiahao Li(李嘉豪)1, Jun Han(韩军)1, Huayao Tu(涂华垚)2, Ting Lei(雷挺)2, Wenxin He(贺雯馨)1, Baoshun Zhang(张宝顺)2, and Zhongming Zeng(曾中明)2,‡
1 Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, China;
2 Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance. The response speed of single ReS2 photodetector is slow exceptionally, the heterostructure could improves the response speed of ReS2-based photodetector, but the photodetectors responsivity is reduced greatly, which restricts the development of ReS2. In this paper, a vertically structured ReS2 /SnS2 van der Waals heterostructure photodetectors is prepared, using ReS2 as the transport layer and SnS2 as the light absorbing layer to regulate the channel current. The device has an ultra-high photoconductive gain of 1010, which exhibits an ultra-high responsivity of 4706 A/W under 365-nm illumination and response speed in seconds, and has an ultra-high external quantum efficiency of 1.602×106% and a high detectivity of 5.29×1012 jones. The study for ReS2-based photodetector displays great potential for developing future optoelectronic devices.
Keywords:  two-dimensional material      ReS2      heterostructure      photodetector  
Received:  23 January 2023      Revised:  13 May 2023      Accepted manuscript online:  30 May 2023
PACS:  85.60.-q (Optoelectronic devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574011, 60908012, 61575008, 61775007, 61731019, 61874145, 62074011, and 62134008), the Beijing Natural Science Foundation (Grant Nos. 4182015, 4172011, and 4202010), and Beijing Nova Program (Grant No. Z201100006820096). The authors would like to thank the Nano Fabrication Facility, Vacuum Interconnected Nanotech Workstation at Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, and Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences for their technical supports.
Corresponding Authors:  Yanhui Xing, Zhongming Zeng     E-mail:  xingyanhui@bjut.edu.cn;zmzeng2012@sinano.ac.cn

Cite this article: 

Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明) Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure 2023 Chin. Phys. B 32 098504

[1] Zheng W, Liu X H, Xie J Y, Lu G C and Zhang J 2021 Coordination Chemistry Reviews 447 214151
[2] Gao Z L, Zhao M Q, Ashik M M A and Johnson A T C 2020 J. Phys. Mater 3 042003
[3] Chen G Y, Hu X Y, Gu M W, Wu H, Chen K Y, Yu H, Ren B Y, Li Z, Luan Y G, Tang T, Cheng Y F, Huang H B, Chen L G, Zhang B Y and Ou J Z 2022 Adv. Funct. Mater. 32 2202239
[4] Saha D, Varghese A and Lodha S 2020 ACS Appl. Nano Mater. 3 820
[5] Kang S, Kim Y S, Jeong J H, Kwon J, Kim J H, Jung Y, Kim J C, Kim B, Bae S H, Huang P Y, Hone J C, Jeong H Y, Park J W, Lee C H and Lee G H 2021 ACS Appl. Mater. Interfaces 13 1245
[6] Mortelmans W, Mehta A N, Balaji Y, Kazzi S E, Sergeant S, Houssa M, Gendt S D, Heyns M and Merckling C 2020 2$D Mater 7 025027
[7] Zhang X K, Yu H H, Tang W H, Wei X F, Gao L, Hong M Y, Liao Q L, Kang Z, Zhang Z and Zhang Y 2022 Adv. Mater. 34 2109521
[8] Zhang X K, Liu B S, Gao L, Yu H H, Liu X Z, Du J L, Xiao J K, Liu Y H, Gu L, Liao Q L, Kang Z, Zhang Z and Zhang Y 2021 Nat. Commun. 12 1522
[9] Zhang X K, Liao Q L, Kang Z, Liu B S, Ou Y, Du J L, Xiao J K, Gao L, Shan H Y, Luo Y, Fang Z Y, Wang P D, Sun Z, Zhang Z and Zhang Y 2019 Acs Nano 13 3280
[10] Jeon J, Choi H, Baek S, Choi S, Cho J H and Lee S 2021 Appl. Surf. Sci. 544 148865
[11] Moon Y S, Shon J H, Kim D, Lee K, Joo M K and Kim G T 2020 Appl. Phys. Lett. 116 183102
[12] Cho A J, Namgung S D, Kim H and Kwon J Y 2017 APL Mater. 5 076101
[13] Jariwala B, Voiry D, Jindal A, Chalke B A, Bapat R, Thamizhavel A, Chhowalla M, Deshmukh M and Bhattacharya A 2016 Chem. Mater. 28 3352
[14] Liu E F, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938
[15] Ma H X, Xing Y H, Han J, Cui B Y, Lei T, Tu H Y, Guan B L, Zeng Z M, Zhang B S and Lv W M 2022 Adv. Opt. Mater. 10 2101772
[16] Zhang D B, Gao Q, Chen Y Z, Xia Y D, Wang H, Wang H Y and Ni Y X 2020 Adv. Theory Simul. 3 2000144
[17] Wang Z D, Zeng P Y, Hu S J, Wu X M, He J Y, Wu Z T, Wang W H, Zheng P, Zheng H, Zheng L, Huo D X and Zhang Y 2021 Nanotechnology 32 465201
[18] Park S, Ha J, Khan M F, Im C, Park J Y, Yoo S H, Rehman M A, Kang K, Lee S H and Jun S C 2022 ACS Appl. Electron. Mater. 4 4306
[19] Cui B Y, Han J, Xing Y H, Lv W M, Lei T, Ma H X, Zeng Z M and Zhang B S 2021 Phys. Status Solidi A 218 2100228
[20] Xiong Y, Chen H W, Zhang D W and Zhou P 2019 Phys. Status Solidi RRL 13 1800658
[21] Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B and Wei Z M 2016 Adv. Electron. Mater. 2 1600298
[22] Ahn J, Kyhm J H, Kang H K, Kwon N, Kim H K, Park S and Hwang D K 2021 ACS Photon. 8 2650
[23] Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukn M and Lodha S 2018 ACS Appl. Mater. & Interfaces 10 36512
[24] Zhang E, Jin Y B, Yuan X, Wang W Y, Zhang C, Tang L, Liu S S, Zhou P, Hu W D and Xiu F X 2015 Adv. Funct. Mater. 25 4076
[25] Tao J J, Jiang J B, Zhao S N, Zhang Y, Li X X, Fang X S, Wang P, Hu W D, Lee Y H, Lu H L and Zhang D W 2021 ACS Nano 15 3241
[26] Qin J K, Yan H, Qiu G, Si M W, Miao P, Duan Y Q, Shao W Z, Zhen L, Xu C Y and Ye P D D 2019 Nano Res. 12 669
[27] Varghese A, Saha D, Thakar K, Jindal V, Ghosh S, Medhekar N V, Ghosh S and Lodha S 2020 Nano Lett. 20 1707
[28] Yu H H, Liao Q L, Kang Z, Wang Z Y, Liu B S, Zhang X K, Du J L, Ou Y, Hong M Y, Xiao J K, Zhang Z and Zhang Y 2020 Small 16 2005520
[29] Wen Y, Yin L, He P, Wang Z X, Zhang X K, Wang Q S, Shifa T A, Xu K, Wang F M, Zhan X Y, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437
[1] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[2] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[3] Electronic structure of cuprate-nickelate infinite-layer heterostructure
Dachuan Chen(陈大川), Paul Worm, Liang Si(司良), Chunxiao Zhang(张春小), Fenglin Deng(邓凤麟), Peiheng Jiang(蒋沛恒), and Zhicheng Zhong(钟志诚). Chin. Phys. B, 2023, 32(8): 087105.
[4] InSe-Te van der Waals heterostructures for current rectification and photodetection
Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(8): 087303.
[5] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[6] Tunable correlation in twisted monolayer-trilayer graphene
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(6): 067204.
[7] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[8] Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance
Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣). Chin. Phys. B, 2023, 32(5): 050701.
[9] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[10] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[13] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[14] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[15] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
No Suggested Reading articles found!