|
|
Exact solution of slow quench dynamics and nonadiabatic characterization of topological phases |
Rui Wu(邬睿), Panpan Fang(房盼攀), Chen Sun(孙辰), and Fuxiang Li(李福祥)† |
School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract Previous studies have shown that the bulk topology of single-particle systems can be captured by the band inversion surface or by the spin inversion surface emerging on the time-averaged spin polarization. Most of the studies, however, are based on the single-particle picture even though the systems are fermionic and multi-bands. Here, we study the slow quench dynamics of topological systems with all the valence bands fully occupied, and show that the concepts of band inversion surface and spin inversion surface are still valid. More importantly, the many-particle nonadiabatic quench dynamics is shown to be reduced to a new and nontrivial three-level Landau-Zener model. This nontrivial three-level Landau-Zener problem is then solved analytically by applying the integrability condition and symmetry considerations, and thus adds a new member to the few models that are exactly solvable. Based on the analytical results, the topological spin texture revealed by the time-averaged spin polarization can be applied to characterize the bulk topology and thus provides a direct comparison for future experiments.
|
Received: 07 January 2023
Revised: 23 April 2023
Accepted manuscript online: 27 April 2023
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
33.50.Hv
|
(Radiationless transitions, quenching)
|
|
71.70.Di
|
(Landau levels)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1200700), the National Natural Science Foundation of China (Grant Nos.11905054, 12275075 and 12105094), and the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Fuxiang Li
E-mail: fuxiangli@hnu.edu.cn
|
Cite this article:
Rui Wu(邬睿), Panpan Fang(房盼攀), Chen Sun(孙辰), and Fuxiang Li(李福祥) Exact solution of slow quench dynamics and nonadiabatic characterization of topological phases 2023 Chin. Phys. B 32 080304
|
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [2] Laughlin R B 1981 Phys. Rev. B 23 5632 [3] Halperin B I 1982 Phys. Rev. B 25 2185 [4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [5] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [6] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904 [7] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233 [8] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [10] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [11] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301 [12] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302 [13] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbne S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162 [14] Eisert J, Friesdorf M and Gogolin C 2015 Nat. Phys. 11 124 [15] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y J, Liu X J, Chen S and Pan J W 2021 Science 372 271 [16] McGinley M and Cooper N R 2019 Phys. Rev. B 99 075148 [17] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett. 110 135704 [18] Heyl M 2014 Phys. Rev. Lett. 113 205701 [19] Zunkovic B, Heyl M, Knap M and Silva A 2018 Phys. Rev. Lett. 120 130601 [20] Corps A L and Relano A 2023 Phys. Rev. Lett. 130 100402 [21] Pastori L, Barbarino S and Budich J C 2020 Phys. Rev. Res. 2 033259 [22] Lee T E, Reiter F and Moiseyev N 2014 Phys. Rev. Lett. 113 250401 [23] Zhu B, Ke Y G, Zhong H H and Lee C H 2020 Phys. Rev. Res. 2 023043 [24] Zhang L, Zhang L, Niu S and Liu X J 2018 Sci. Bull. 63 1385 [25] Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S and Pan J W 2018 Phys. Rev. Lett. 121 250403 [26] Yi C R, Zhang L, Zhang L, Jiao R H, Cheng X C, Wang Z Y, Xu X T, Sun W, Liu X J, Chen S and Pan J W 2019 Phys. Rev. Lett. 123 190603 [27] Wang Y, Ji W T, Chai Z H, Guo Y H, Wang M Q, Ye X Y, Yu P, Zhang L, Qin X, Wang P F, Shi F Z, Rong X, Lu D W, Liu X J and Du J F 2019 Phys. Rev. A 100 052328 [28] Liu X J, Liu Z X and Cheng M 2013 Phys. Rev. Lett. 110 076401 [29] Liu X J, Law K T and Ng T K 2014 Phys. Rev. Lett. 112 086401 [30] Bayat A, Alkurtass B, Sodano P, Johannesson H and Bose S 2018 Phys. Rev. Lett. 121 030601 [31] Zhang L, Zhang L, Hu Y, Niu S and Liu X J 2021 Phys. Rev. B 103 224308 [32] Ye J C and Li F X 2020 Phys. Rev. A 102 042209 [33] Fang P, Wang Y X and Li F 2022 Phys. Rev. A 106 022219 [34] Landau L D and Lifshitz E M 1980 Quantum Mechanics (Oxford: Butterworth-Heinemann) [35] Sinitsyn N A 2014 Phys. Rev. A 90 062509 [36] Sinitsyn N A, Yuzbashyan E A, Chernyak V Y, Patra A and Sun C 2018 Phys. Rev. Lett. 120 190402 [37] Sinitsyn N A and Li F 2016 Phys. Rev. A 93 063859 [38] Zhang L, Jia W and Liu X J 2022 Sci. Bull. 67 1236 [39] Yu L X, Ji T W, Zhang L, Wang Y, Wu J S and Liu X J 2021 Phys. Rev. X Quantum 2 020320 [49] Li F, Sun C, Chernyak V Y and Sinitsyn N A 2017 Phys. Rev. A 96 022107 [40] del Campo A, Kibble T W and Zurek W H 2013 J. Phys. Condens. Matter 25 404210 [41] Farhi E, Goldstone J, Gutmann S, Lapan J, Ludgren A and Preda D 2001 Science 292 472 [42] Demkov Y N and Ostrovsky V N 2001 J. Phys. B 34 2419 [43] Sinitsyn N A and Li F 2016 Phys. Rev. A 93 063859 [44] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125 [45] Sinitsyn N A, Lin J and Chernyak V Y 2017 Phys. Rev. A 95 012140 [46] Sinitsyn N A 2014 Phys. Rev. A 90 062509 [47] Fu L and Kane C L 2006 Phys. Rev. B 74 195312 [48] Fu L and Kane C L 2007 Phys. Rev. B 76 045302 [50] Rachel S and Le H K 2010 Phys. Rev. B 82 075106 [51] Hohenadler M, Lang T C and Assaad F F 2011 Phys. Rev. Lett. 106 100403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|