|
|
Quantum interferometric power and non-Markovianity in the decoherence channels |
Shaojie Xiong(熊少杰)1, Zhe Sun(孙哲)2,†, and Xiaoguang Wang(王晓光)3,‡ |
1. Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China; 2. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China; 3. Key Laboratory of Optical Field Manipulation of Zhejiang Province and Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract In quantum open systems, non-Markovianity is an important phenomenon that allows a backflow of information from the environment to the system. In this work, we investigate the non-Markovianity problems in two different types of channels, where the system-environment interactions are treated with and without the rotating-wave approximation (RWA). We employ the quantum interferometric power (QIP) to quantify the non-Markovian dynamics, which is the minimal quantum Fisher information obtained by the local unitary evolution in a bipartite system. By the hierarchy equation method, we calculate the dynamical evolution of the QIP in the non-RWA case. The results show that the dynamical behavior under the non-RWA is significantly different from that under the RWA in both weak and strong coupling. Moreover, in the non-RWA case, we also find the nonmonotonic behavior of the non-Markovianity measure with the variation of coupling strength, which is caused by the competition between the rotating-wave terms and the counterrotating-wave terms. As a result, we highlight the importance of the counterrotating-wave terms for the influence of non-Markovianity.
|
Received: 02 March 2023
Revised: 05 April 2023
Accepted manuscript online: 07 April 2023
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.11935012,12175052, and 11775065) and the Postdoctoral Science Foundation of China (Grant No.2022M722794). |
Corresponding Authors:
Zhe Sun, Xiaoguang Wang
E-mail: sunzhe@hznu.edu.cn;xgwang@zstu.edu.cn
|
Cite this article:
Shaojie Xiong(熊少杰), Zhe Sun(孙哲), and Xiaoguang Wang(王晓光) Quantum interferometric power and non-Markovianity in the decoherence channels 2023 Chin. Phys. B 32 080302
|
[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press) [2] Vega I de and Alonso D 2016 Rev. Mod. Phys. 88 021002 [4] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502 [5] Fanchini F F, Karpat G, Cakmak B, Castelano L K, Aguilar G H, Farías O J, Walborn S P, Souto Ribeiro P H and de Oliveira M C 2014 Phys. Rev. Lett. 112 210402 [6] Munsif J, Xu X Y, Wang Q Q, Chen Z, Han Y J, Li C F and Guo G C 2019 Chin. Phys. B 28 090303 [7] Žnidarič M, Pineda C and García-Mata I 2011 Phys. Rev. Lett. 107 080404 [8] Mazzola L, Laine E M, Breuer H P, Maniscalco S and Piilo J 2010 Phys. Rev. A 81 062120 [9] Zeng J, Song Y J, Lu J and Zhou L 2023 Chin. Phys. B 32 030305 [10] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 [11] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403 [12] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502 [13] Rajagopal A K, Usha Devi A R and Rendell R W 2010 Phys. Rev. A 82 042107 [14] Wu D K, Hou Z B, Xiang G Y, Li C F, Guo G C, Dong D Y and Nori F 2020 npj Quantum Inf. 6 55 [15] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103 [16] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101 [17] Luo Y and Li Y M 2019 Chin. Phys. B 28 040301 [18] Li C F, Tang J S, Li Y L and Guo G C 2011 Phys. Rev. A 83 064102 [19] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2018 Phys. Rev. Lett. 120 060406 [21] Ringbauer M, Wood C J, Modi K, Gilchrist A, White A G and Fedrizzi A 2015 Phys. Rev. Lett. 114 090402 [22] Girolami D, Souza A M, Giovannetti V, Tufarelli T, Filgueiras J G, Sarthour R S, Soares-Pinto D O, Oliveira I S and Adesso G 2014 Phys. Rev. Lett. 112 210401 [23] Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. A 91 032115 [24] He S, Zhang Y Y, Cheng Q H, Ren X Z, Liu T and Wang K L 2013 Chin. Phys. B 22 064205 [25] Sun Z, Ma J, Wang X G and Nori F 2012 Phys. Rev. A 86 012107 [26] Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404 [27] Xiong S J, Zhang Y, Sun Z, Yu L, Su Q P, Xu X Q, Jin J S, Xu Q J, Liu J M, Chen K F and Yang C P 2017 Optica 4 1065 [28] Larson J 2012 Phys. Rev. Lett. 108 033601 [29] Tanaka M and Tanimura Y 2010 J. Chem. Phys. 132 214502 [30] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401 [31] Ishizaki A and Tanimura Y 2007 J. Phys. Chem. A 111 9269 [32] Sun Z, Zhou L W, Xiao G Y, Poletti D and Gong J B 2016 Phys. Rev. A 93 012121 [33] Helstrom C 1967 Phys. Lett. A 25 101 [34] Helstrom C 1968 IEEE Trans. Inform. Theory 14 234 [35] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [36] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A: Math. Theor. 53 023001 [37] Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111 [38] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [39] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|