Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080302    DOI: 10.1088/1674-1056/accb4e
GENERAL Prev   Next  

Quantum interferometric power and non-Markovianity in the decoherence channels

Shaojie Xiong(熊少杰)1, Zhe Sun(孙哲)2,†, and Xiaoguang Wang(王晓光)3,‡
1. Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China;
3. Key Laboratory of Optical Field Manipulation of Zhejiang Province and Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  In quantum open systems, non-Markovianity is an important phenomenon that allows a backflow of information from the environment to the system. In this work, we investigate the non-Markovianity problems in two different types of channels, where the system-environment interactions are treated with and without the rotating-wave approximation (RWA). We employ the quantum interferometric power (QIP) to quantify the non-Markovian dynamics, which is the minimal quantum Fisher information obtained by the local unitary evolution in a bipartite system. By the hierarchy equation method, we calculate the dynamical evolution of the QIP in the non-RWA case. The results show that the dynamical behavior under the non-RWA is significantly different from that under the RWA in both weak and strong coupling. Moreover, in the non-RWA case, we also find the nonmonotonic behavior of the non-Markovianity measure with the variation of coupling strength, which is caused by the competition between the rotating-wave terms and the counterrotating-wave terms. As a result, we highlight the importance of the counterrotating-wave terms for the influence of non-Markovianity.
Keywords:  quantum open system      auantum non-Markovianity      auantum interferometric power  
Received:  02 March 2023      Revised:  05 April 2023      Accepted manuscript online:  07 April 2023
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.11935012,12175052, and 11775065) and the Postdoctoral Science Foundation of China (Grant No.2022M722794).
Corresponding Authors:  Zhe Sun, Xiaoguang Wang     E-mail:  sunzhe@hznu.edu.cn;xgwang@zstu.edu.cn

Cite this article: 

Shaojie Xiong(熊少杰), Zhe Sun(孙哲), and Xiaoguang Wang(王晓光) Quantum interferometric power and non-Markovianity in the decoherence channels 2023 Chin. Phys. B 32 080302

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[2] Vega I de and Alonso D 2016 Rev. Mod. Phys. 88 021002
[4] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[5] Fanchini F F, Karpat G, Cakmak B, Castelano L K, Aguilar G H, Farías O J, Walborn S P, Souto Ribeiro P H and de Oliveira M C 2014 Phys. Rev. Lett. 112 210402
[6] Munsif J, Xu X Y, Wang Q Q, Chen Z, Han Y J, Li C F and Guo G C 2019 Chin. Phys. B 28 090303
[7] Žnidarič M, Pineda C and García-Mata I 2011 Phys. Rev. Lett. 107 080404
[8] Mazzola L, Laine E M, Breuer H P, Maniscalco S and Piilo J 2010 Phys. Rev. A 81 062120
[9] Zeng J, Song Y J, Lu J and Zhou L 2023 Chin. Phys. B 32 030305
[10] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[11] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[12] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[13] Rajagopal A K, Usha Devi A R and Rendell R W 2010 Phys. Rev. A 82 042107
[14] Wu D K, Hou Z B, Xiang G Y, Li C F, Guo G C, Dong D Y and Nori F 2020 npj Quantum Inf. 6 55
[15] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[16] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[17] Luo Y and Li Y M 2019 Chin. Phys. B 28 040301
[18] Li C F, Tang J S, Li Y L and Guo G C 2011 Phys. Rev. A 83 064102
[19] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2018 Phys. Rev. Lett. 120 060406
[21] Ringbauer M, Wood C J, Modi K, Gilchrist A, White A G and Fedrizzi A 2015 Phys. Rev. Lett. 114 090402
[22] Girolami D, Souza A M, Giovannetti V, Tufarelli T, Filgueiras J G, Sarthour R S, Soares-Pinto D O, Oliveira I S and Adesso G 2014 Phys. Rev. Lett. 112 210401
[23] Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. A 91 032115
[24] He S, Zhang Y Y, Cheng Q H, Ren X Z, Liu T and Wang K L 2013 Chin. Phys. B 22 064205
[25] Sun Z, Ma J, Wang X G and Nori F 2012 Phys. Rev. A 86 012107
[26] Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
[27] Xiong S J, Zhang Y, Sun Z, Yu L, Su Q P, Xu X Q, Jin J S, Xu Q J, Liu J M, Chen K F and Yang C P 2017 Optica 4 1065
[28] Larson J 2012 Phys. Rev. Lett. 108 033601
[29] Tanaka M and Tanimura Y 2010 J. Chem. Phys. 132 214502
[30] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
[31] Ishizaki A and Tanimura Y 2007 J. Phys. Chem. A 111 9269
[32] Sun Z, Zhou L W, Xiao G Y, Poletti D and Gong J B 2016 Phys. Rev. A 93 012121
[33] Helstrom C 1967 Phys. Lett. A 25 101
[34] Helstrom C 1968 IEEE Trans. Inform. Theory 14 234
[35] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[36] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A: Math. Theor. 53 023001
[37] Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111
[38] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[39] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[1] Generalized uncertainty principle from long-range kernel effects: The case of the Hawking black hole temperature
Rami Ahmad El-Nabulsi, and Waranont Anukool. Chin. Phys. B, 2023, 32(9): 090303.
[2] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[3] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[4] Quantum entangled fractional Fourier transform based on the IWOP technique
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040302.
[5] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[6] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[7] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[8] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[9] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[10] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[11] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[12] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[13] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[14] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[15] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
No Suggested Reading articles found!