Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047502    DOI: 10.1088/1674-1056/acb423
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes

Jianchao Meng(孟建超)1,2, Xinxiang Chen(陈鑫祥)1, Tingna Shao(邵婷娜)1, Mingrui Liu(刘明睿)3, Weimin Jiang(姜伟民)1, Zitao Zhang(张子涛)1, Changmin Xiong(熊昌民)1, Ruifen Dou(窦瑞芬)1,†, and Jiacai Nie(聂家财)1,‡
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  We study systematically the negative magnetoresistance ($MR$) effect in WTe$_{2\pm \alpha }$ flakes with different thicknesses and doping concentrations. The negative $MR$ is sensitive to the relative orientation between electrical-/magnetic-field and crystallographic orientation of WTe$_{2\pm \alpha }$. The analysis proves that the negative $MR$ originates from chiral anomaly and is anisotropic. Maximum entropy mobility spectrum is used to analyze the electron and hole concentrations in the flake samples. It is found that the negative $MR$ observed in WTe$_{2\pm \alpha }$ flakes with low doping concentration is small, and the high doping concentration is large. The doping-induced disorder obviously inhibits the positive $MR$, so the negative $MR$ can be more easily observed. In a word, we introduce disorder to suppress positive $MR$ by doping, and successfully obtain the negative $MR$ in WTe$_{2\pm \alpha }$ flakes with different thicknesses and doping concentrations, which indicates that the chiral anomaly effect in WTe$_{2}$ is robust.
Keywords:  Weyl semimetal      WTe2±α flakes      doping      chiral anomaly      robustness  
Received:  17 September 2022      Revised:  12 December 2022      Accepted manuscript online:  18 January 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  61.46.-w (Structure of nanoscale materials)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11674031, 11974048, and 12074334) and the National Basic Research Program of China (Grant Nos. 2014CB920903 and 2013CB921701).
Corresponding Authors:  Ruifen Dou, Jiacai Nie     E-mail:  rfdou@bnu.edu.cn;jcnie@bnu.edu.cn

Cite this article: 

Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财) Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes 2023 Chin. Phys. B 32 047502

[1] Son D and Spivak B Z 2013 Phys. Rev. B 88 104412
[2] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[3] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[4] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161
[5] Zhang C, Xu S, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N and Lee C 2016 Nat. Commun. 7 1
[6] Niemann A C, Gooth J, Shu C W, Svenja B, Philip S, Ruben H, Bernd R, Chandra S, Vicky S, Marcus S, Claudia F, Yan B and Kornelius N 2017 Sci. Rep. 7 43394
[7] Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S, Shen Z, Fang, Z, Dai X, Hussain Z and Chen Y 2018 Science 12 6700
[8] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J and Ong N P 2018 Phys. Rev. X 8 031002
[9] He L, Hong X, Dong J, Pan J, Zhang Z, Zhang J and Li S 2014 Phys. Rev. Lett. 113 246402
[10] Jeon S, Zhou B, Gyenis A, Feldman B, Kimchi I, Potter A, Gibson Q, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
[11] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G and Valla T 2016 Nat. Phys. 12 550
[12] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[13] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142
[14] Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H and Xiu F 2017 Nano Lett. 17 878
[15] Lv Y, Li X, Zhang B, Deng W, Yao S, Chen Y, Zhou J, Zhang S, Lu M, Zhang L, Tian M, Sheng L and Chen Y 2017 Phys. Rev. Lett. 118 096603
[16] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z, Yang S, Zhu Z, Alshareef H and Zhang X 2017 Nat. Commun. 8 1
[17] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B 2015 Nature 527 495
[18] Zhang M, Yang Z and Wang G 2018 J. Phys. Chem. C 122 3533
[19] Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 185 20
[20] Ishizuka H and Nagaosa N 2019 Phys. Rev. B 99 115205
[21] Kong W, Wu S, Richard P, Lian C, Wang J, Yang C, Shi Y and Ding H 2015 Appl. Phys. Lett. 106 081906
[22] Arnold F, Shekhar C, Wu S, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
[23] Schumann T, Goyal M and Kealhofer D A 2017 Phys. Rev. B 95 241113
[24] Dos Reis R, Ajeesh M, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M and Hassinger E 2016 New J. Phys. 18 085006
[25] Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, Zheng Y and Xu Z 2017 Front. Phys. 12 1
[26] Ritchie L, Xiao G, Ji Y, Chen T, Chien C, Zhang M, Chen J, Liu Z, Wu G and Zhang X 2003 Phys. Rev. B 68 104430
[27] Li Z, Zeng Y, Zhang J, Zhou M and Wu W 2018 Phys. Rev. B 98 165441
[28] Kim H J, Kim K S, Wang J, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603
[29] Kiatgamolchai S, Myronov M, Mironov O A, Kantser V G, Parker E H and Whall T E 2002 Phys. Rev. E 66 036705
[30] Meng J, Chen X, Liu M, Jiang W, Zhang Z, Ling J, Shao T, Yao C, He L, Dou R, Xiong C and Nie J 2020 J. Phys.: Condens. Matter. 32 355703
[31] Jaynes E T 1957 Phys. Rev. 106 620
[32] Xiang F, Srinivasan A, Du Z, Klochan O, Dou S, Hamilton A R and Wang X 2018 Phys. Rev. B 98 035115
[33] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X, Mandrus D, Xie X, Pan M and Wang J 2015 Phys. Rev. B 92 041104
[34] Ali M N, Schoop L, Xiong J, Flynn S, Gibson Q, Hirschberger M, Ong N P and Cava R J 2015 Europhys. Lett. 110 67002
[1] Electronic and Thermal Properties of Ag-Doped Single Crystal Zinc Oxide via Laser-Induced Technique
Huan Xing (邢欢), Hui-Qiong Wang (王惠琼), Tinglu Song (宋廷鲁), Chunli Li (李纯莉), Yang Dai (戴扬), Gengming Fu (傅耿明), Junyong Kang (康俊勇), Jin-Cheng Zheng (郑金成). Chin. Phys. B, 2023, 32(6): 066107.
[2] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaNhole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭), Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[3] Optimal impurity distribution model and experimental verification of variation of lateral doping termination
Min Ren(任敏), Chang-Yu Ye(叶昶宇), Jian-Yu Zhou(周建宇), Xin Zhang(张新), Fang Zheng(郑芳), Rong-Yao Ma(马荣耀), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(4): 048505.
[4] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[5] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[6] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[7] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[8] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[13] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[14] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[15] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
No Suggested Reading articles found!