CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes |
Jianchao Meng(孟建超)1,2, Xinxiang Chen(陈鑫祥)1, Tingna Shao(邵婷娜)1, Mingrui Liu(刘明睿)3, Weimin Jiang(姜伟民)1, Zitao Zhang(张子涛)1, Changmin Xiong(熊昌民)1, Ruifen Dou(窦瑞芬)1,†, and Jiacai Nie(聂家财)1,‡ |
1 Department of Physics, Beijing Normal University, Beijing 100875, China; 2 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; 3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract We study systematically the negative magnetoresistance ($MR$) effect in WTe$_{2\pm \alpha }$ flakes with different thicknesses and doping concentrations. The negative $MR$ is sensitive to the relative orientation between electrical-/magnetic-field and crystallographic orientation of WTe$_{2\pm \alpha }$. The analysis proves that the negative $MR$ originates from chiral anomaly and is anisotropic. Maximum entropy mobility spectrum is used to analyze the electron and hole concentrations in the flake samples. It is found that the negative $MR$ observed in WTe$_{2\pm \alpha }$ flakes with low doping concentration is small, and the high doping concentration is large. The doping-induced disorder obviously inhibits the positive $MR$, so the negative $MR$ can be more easily observed. In a word, we introduce disorder to suppress positive $MR$ by doping, and successfully obtain the negative $MR$ in WTe$_{2\pm \alpha }$ flakes with different thicknesses and doping concentrations, which indicates that the chiral anomaly effect in WTe$_{2}$ is robust.
|
Received: 17 September 2022
Revised: 12 December 2022
Accepted manuscript online: 18 January 2023
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11674031, 11974048, and 12074334) and the National Basic Research Program of China (Grant Nos. 2014CB920903 and 2013CB921701). |
Corresponding Authors:
Ruifen Dou, Jiacai Nie
E-mail: rfdou@bnu.edu.cn;jcnie@bnu.edu.cn
|
Cite this article:
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财) Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes 2023 Chin. Phys. B 32 047502
|
[1] Son D and Spivak B Z 2013 Phys. Rev. B 88 104412 [2] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [3] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 [4] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161 [5] Zhang C, Xu S, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N and Lee C 2016 Nat. Commun. 7 1 [6] Niemann A C, Gooth J, Shu C W, Svenja B, Philip S, Ruben H, Bernd R, Chandra S, Vicky S, Marcus S, Claudia F, Yan B and Kornelius N 2017 Sci. Rep. 7 43394 [7] Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S, Shen Z, Fang, Z, Dai X, Hussain Z and Chen Y 2018 Science 12 6700 [8] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J and Ong N P 2018 Phys. Rev. X 8 031002 [9] He L, Hong X, Dong J, Pan J, Zhang Z, Zhang J and Li S 2014 Phys. Rev. Lett. 113 246402 [10] Jeon S, Zhou B, Gyenis A, Feldman B, Kimchi I, Potter A, Gibson Q, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851 [11] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G and Valla T 2016 Nat. Phys. 12 550 [12] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023 [13] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 [14] Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H and Xiu F 2017 Nano Lett. 17 878 [15] Lv Y, Li X, Zhang B, Deng W, Yao S, Chen Y, Zhou J, Zhang S, Lu M, Zhang L, Tian M, Sheng L and Chen Y 2017 Phys. Rev. Lett. 118 096603 [16] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z, Yang S, Zhu Z, Alshareef H and Zhang X 2017 Nat. Commun. 8 1 [17] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B 2015 Nature 527 495 [18] Zhang M, Yang Z and Wang G 2018 J. Phys. Chem. C 122 3533 [19] Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 185 20 [20] Ishizuka H and Nagaosa N 2019 Phys. Rev. B 99 115205 [21] Kong W, Wu S, Richard P, Lian C, Wang J, Yang C, Shi Y and Ding H 2015 Appl. Phys. Lett. 106 081906 [22] Arnold F, Shekhar C, Wu S, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 [23] Schumann T, Goyal M and Kealhofer D A 2017 Phys. Rev. B 95 241113 [24] Dos Reis R, Ajeesh M, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M and Hassinger E 2016 New J. Phys. 18 085006 [25] Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, Zheng Y and Xu Z 2017 Front. Phys. 12 1 [26] Ritchie L, Xiao G, Ji Y, Chen T, Chien C, Zhang M, Chen J, Liu Z, Wu G and Zhang X 2003 Phys. Rev. B 68 104430 [27] Li Z, Zeng Y, Zhang J, Zhou M and Wu W 2018 Phys. Rev. B 98 165441 [28] Kim H J, Kim K S, Wang J, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603 [29] Kiatgamolchai S, Myronov M, Mironov O A, Kantser V G, Parker E H and Whall T E 2002 Phys. Rev. E 66 036705 [30] Meng J, Chen X, Liu M, Jiang W, Zhang Z, Ling J, Shao T, Yao C, He L, Dou R, Xiong C and Nie J 2020 J. Phys.: Condens. Matter. 32 355703 [31] Jaynes E T 1957 Phys. Rev. 106 620 [32] Xiang F, Srinivasan A, Du Z, Klochan O, Dou S, Hamilton A R and Wang X 2018 Phys. Rev. B 98 035115 [33] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X, Mandrus D, Xie X, Pan M and Wang J 2015 Phys. Rev. B 92 041104 [34] Ali M N, Schoop L, Xiong J, Flynn S, Gibson Q, Hirschberger M, Ong N P and Cava R J 2015 Europhys. Lett. 110 67002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|