Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067301    DOI: 10.1088/1674-1056/ac8f33
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional tetragonal ZnB: A nodalline semimetal with good transport properties

Yong-Chun Zhao(赵永春)1, Ming-Xin Zhu(朱铭鑫)1, Sheng-Shi Li(李胜世)2, and Ping Li(李萍)1,†
1 School of Physics and Technology, University of Jinan, Jinan 250022, China;
2 Institute of Spintronics, University of Jinan, Jinan 250022, China
Abstract  Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin-orbit coupling (SOC) effect. Here, we predict that 2D tetragonal ZnB is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the $S$ point at the Fermi surface without SOC, which are mainly composed of the ${\rm p}_{xy}$ orbitals of Zn and B atoms and the ${\rm p}_{z}$ orbitals of the B atom. Therefore, the system presents a nodal line centered on the $S$ point in its Brillouin zone (BZ). And the nodal line is protected by the horizontal mirror symmetry $M_{z}$. We further examine the robustness of a nodal line under biaxial strain by applying up to $-4%$ in-plane compressive strain and 5% tensile strain on the ZnB monolayer, respectively. The transmission along the $a$ direction is significantly stronger than that along the $b$ direction in the conductive channel. The current in the $a$ direction is as high as 26.63 μA at 0.8 V, and that in the $b$ direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of ZnB show the negative differential resistance (NDR) effect after 0.8 V along the $a (b)$ direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.
Keywords:  nodal-line semimetals      negative differential resistance (NDR) effect      horizontal mirror symmetry  
Received:  19 May 2022      Revised:  30 August 2022      Accepted manuscript online:  05 September 2022
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  62.20.D- (Elasticity)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041), Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939), and the National Natural Science Foundation of China (Grant No. 62071200).
Corresponding Authors:  Ping Li     E-mail:  ss_lip@ujn.edu.cn

Cite this article: 

Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍) Two-dimensional tetragonal ZnB: A nodalline semimetal with good transport properties 2023 Chin. Phys. B 32 067301

[1] Yazyev O V 2013 Acc. Chem. Res. 46 2319
[2] Butler S Z, Hollen S M and Cao L 2013 ACS Nano 7 2898
[3] Bhimanapati G R, Lin Z, Meunier V, Jung Y, et al.2015 ACS Nano 9 11509
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H2016 Science 353
[5] Kassem A T2013 IOSR J. Appl. Chem. 6 45
[6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K2009 Rev. Mod. Phys. 81 109
[7] Titheridge J E 1998 J. Geophys. Res. Space Phys. 103 2261
[8] Bliokh Y P, Freilikher V and Nori F2013 Phys. Rev. B 87 245134
[9] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R2013 Science 342 614
[10] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z2010 Science 329 61
[11] Zhang C W and Yan S S2012 J. Phys. Chem. C 116 4163
[12] Wang Z, Zhou X F, Zhang X, Zhu Q, Dong H, Zhao M and Oganov A R2015 Nano Lett. 15 6182
[13] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S2017 ACS Appl. Mater. Interfaces 9 41443
[14] Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L2018 Phys. Rev. B 98 1
[15] Yuan D, Hu Y, Yang Y and Zhang W2021 Chin. Phys. Lett. 38 117301
[16] Li W, Zhang G and Guo M 2014 Nano Research 7 518
[17] Zhang L, Zhang S F, Ji W X, Zhang C W, Li P, Wang P J, Li S S and Yan S S2018 Nanoscale 10 20748
[18] Wu Y, Wang L L, Mun E, Johnson D D, Mou D, Huang L, Lee Y, Bud'ko S L, Canfield P C and Kaminski A 2016 Nat. Phys. 12 667
[19] Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R2016 Nat. Commun. 7 11696
[20] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y2015 Phys. Rev. B 92 045108
[21] Yu R, Weng H and Fang Z 2015 Phys. Rev. Lett. 115 036807
[22] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C Di, Gan L Y, Liu J F, Xu H and Tong S Y2017 Nanoscale 9 13112
[23] Wirth G, Ölschlger M and Hemmerich A2011 Nat. Phys. 7 147
[24] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y and Yang S A2018 Phys. Rev. B 97 1
[25] Zhou P, Ma Z S and Sun L Z2018 J. Mater. Chem. C 6 1206
[26] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A and Zhang G2019 Nanoscale 11 2468
[27] Feng B, Fu B, Kasamatsu S, et al.2017 Nat. Commun. 8 8
[28] Pang Z X, Zhao Y C, Ji W X, Wang Y and Li P2021 Phys. Chem. Chem. Phys. 23 12280
[29] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N2018 Nat. Nanotechnol. 13 246
[30] Hu Y, Li S S, Ji W X, Zhang C W, Ding M, Wang P J and Yan S S2020 J. Phys. Chem. Lett. 11 485
[31] Schmidt P, Haas S and Levi A F J2006 Appl. Phys. Lett. 88 013502
[32] Tsu R and Esaki L1973 Appl. Phys. Lett. 22 562
[33] Ismail M and Kim S2020 Appl. Surf. Sci. 530 147284
[34] Kresse G and Furthmüller J1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Hafner J1993 Phys. Rev. B 47 558
[36] Langreth D C and Mehl M J1983 Phys. Rev. B 28 1809
[37] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[38] Joubert D1999 Phys. Rev. B 59 1758
[39] Becke A1988 Phys. Rev. A 38 3098
[40] Heyd J, Scuseria G E and Ernzerhof M2003 J. Chem. Phys. 118 8207
[41] Togo A, Oba F and Tanaka I2008 Phys. Rev. B 78 134106
[42] Dudarev S and Botton G1998 Phys. Rev. B 57 1505
[43] Baker J M1971 J. Phys. C Solid State Phys. 4 930
[44] Ozaki T, Nishio K and Kino H2010 Phys. Rev. B 81 035116
[45] Ozaki T2007 Phys. Rev. B 75 035123
[46] Kulish V V and Huang W2017 J. Mater. Chem. C 5 8734
[47] Andrew R C, Mapasha R E and Ukpong A M 2012 Phys. Rev. B 85 125428
[48] Peng R, Ma Y, Huang B and Dai Y2019 J. Mater. Chem. A 7 603
[49] Mouhat F and Coudert F X2014 Phys. Rev. B 90 224104
[50] Zhang X, Wang A and Zhao M2015 Carbon N. Y. 84 1
[51] Landauer R1981 Phys. Lett. A 85 91
[52] Liu N, Zhang L, Chen X, Kong X, Zheng X and Guo H2016 Nanoscale 8 16026
[53] Zhang L, Zhao J, Cheng N and Chen Z2020 Phys. Chem. Chem. Phys. 22 3584
[54] Fu X X, Niu Y, Hao Z W, Dong M M and Wang C K2020 Phys. Chem. Chem. Phys. 22 16063
[1] Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
[2] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[3] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[4] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[5] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[6] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[7] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[8] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[12] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[13] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[14] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!