Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017402    DOI: 10.1088/1674-1056/21/1/017402
RAPID COMMUNICATION Prev   Next  

Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3

Zhang Xiao-Dong(张晓冬), Wu Wei(吴伟), Zheng Ping(郑萍), Wang Nan-Lin(王楠林), and Luo Jian-Lin(雒建林)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at ~90 K and ~27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol·K2, showing a heavy fermion behavior.
Keywords:  antiferromagnetic ordering transition      ferromagnetic ordering transition      canted antiferromagnetic state  
Received:  11 October 2011      Revised:  20 October 2011      Accepted manuscript online: 
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. Y1JA011x11).

Cite this article: 

Zhang Xiao-Dong(张晓冬), Wu Wei(吴伟), Zheng Ping(郑萍), Wang Nan-Lin(王楠林), and Luo Jian-Lin(雒建林) Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3 2012 Chin. Phys. B 21 017402

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[3] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[4] Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Europhys. Lett. 82 57002
[5] Wen H H, Mu G, Fang L, Yang H and Zhu X Y 2008 Europhys. Lett. 82 17009
[6] Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Xu X F, Cao G H and Xu Z A 2008 Europhys. Lett. 83 67006
[7] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[8] Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhang X D, Zheng P, Wang N L and Luo J L 2008 Chin. Phys. Lett. 25 3403
[9] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[10] Tapp J H, Tang Z, Lv B, Sasmal K, Lorenz B, Chu Paul C W and Guloy A M 2008 Phys. Rev. B 78 060505R
[11] Parker D R, Pitcher M J, Baker P J, Franke I, Lancaster T, Blundell S J and Clarke S J 2009 Chem. Commun. 2189
[12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 Europhys. Lett. 83 27006
[14] de la Cruz C, Huang Q, Lynn J W, Li J Y, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P C 2008 Nature 453 899
[15] Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I and Guidi T 2008 Nature 456 930
[16] Lumsden M D, Christianson A D, Parshall D, Stone M B, Nagler S E, MacDougall G J, Mook H A, Lokshin K, Egami T, Abernathy D L, Goremychkin E A, Osborn R, McGuire M A, Sefat A S, Jin R, Sales B C and Mandrus D 2009 Phys. Rev. Lett. 102 107005
[17] Todorov I, Chung D Y, Malliakas C D, Li Q A, Bakas T, Douvalis A, Trimarchi G, Gray K, Mitchell J F, Freeman A J and Kanatzidis M G 2009 J. Am. Chem. Soc. 131 5405
[18] Zhao L L, Yi T H, Fettinger J C, Kauzlarich S M and Morosan E 2009 Phys. Rev. B 80 020404(R)
[19] Wang X F, Wu T, Wu G, Chen H, Xie Y L, Ying J J, Yan Y J, Liu R H and Chen X H 2009 Phys. Rev. Lett. 102 117005
[20] Klingeler R, Leps N, Hellmann I, Popa A, Stockert U, Hess C, Kataev V, Grafe H J, Hammerath F, Lang G, Wurmehl S, Behr G, Harnagea L, Singh S and Büchner B 2010 Phys. Rev. B 81 024506
[21] Akaki M, Tozawa J, Akahoshi D and Kuwahara H 2009 Appl. Phys. Lett. 94 212904
[22] Helme L M, Boothroyd A T, Coldea R and Prabhakaran D 2006 Phys. Rev. B 73 054405
[23] Luo J L, Wang N L, Liu G T, Wu D, Jing X N, Hu F and Xiang T 2004 Phys. Rev. Lett. 93 187203
[24] Nagai M, Tanaka A, Haga Y and Tsutaoka T J 2007 J. Magn. Magn. Mater. 310 1775
[25] Joy P A and Vasudevan S 1992 J. Am. Chem. Soc. 114 7792
[26] Fukazawa H, Nakatsuji S and Maeno Y 2000 Physica B 281 613
[27] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512
[28] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajeeski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[29] Nakatsuji S, Hall D, Balicas L, Fisk Z, Sugahara K, Yoshioka M and Maeno Y 2003 Phys. Rev. Lett. 90 137202
[30] Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 257005
[1] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[2] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[3] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[4] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[8] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[9] Superconductivity in an intermetallic oxide Hf3Pt4Ge2O
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2021, 30(7): 077403.
[10] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[11] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[12] Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4
Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2020, 29(6): 067401.
[13] Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors
Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko. Chin. Phys. B, 2019, 28(10): 107401.
[14] The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors
Wenwen Cui(崔文文), Yinwei Li(李印威). Chin. Phys. B, 2019, 28(10): 107104.
[15] Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15 < x < 0.4)
Rui-Jin Sun(孙瑞锦), Shi-Feng Jin(金士锋), Jun Deng(邓俊), Mu-Nan Hao(郝木难), Lin-Lin Zhao(赵琳琳), Xiao Fan(范晓), Xiao-Ning Sun(孙晓宁), Jian-Gang Guo(郭建刚), Lin Gu(谷林). Chin. Phys. B, 2019, 28(6): 067401.
No Suggested Reading articles found!