Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃)1, Chuan Dong(董川)1, Yi-Zhi Qu(屈一至)2,†, Ling Liu(刘玲)3, Yong Wu(吴勇)3, Xu-Hai Hong(洪许海)4, and Robert J. Buenker5
1 Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; 2 College of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; 3 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 4 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; 5 Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitat Wuppertal, D-42097 Wuppertal, Germany
Abstract The electron excitation processes of are studied in impact energy range of 20—2000 eV/u by using the quantum-mechanical molecular orbital close-coupling (QMOCC) method. Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results. The results agree well with available measurements in the overlapping energy regions overall. The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels. The datasets presented in this paper, including the excitation cross sections, are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker Electron excitation processes in low energy collisions of hydrogen-helium atoms 2022 Chin. Phys. B 31 123401
[1] Asplund M 2005 Annual Review of Astronomy and Astrophysics43 481 [2] Barklem P S 2016 The Astronomy and Astrophysics Review24 9 [3] Wyse R F G 2016 Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields507 13 (arXiv: 1604.04745v1) [4] Kunder A, Kordopatis G, Steinmetz M, et al. 2017 The Astronomical Journal153 75 [5] Sacco G G, Morbidelli L, Franciosini E, et al. 2014 Astronomy & Astrophysics 565 A113 [6] Cropper M, Katz D, Sartoretti P, et al. 2018 Astronomy & Astrophysics 616 A11 [7] Barklem P S, Belyaev A K and Asplund M 2003 Astronomy & Astrophysics 409 L1 [8] Belyaev A K and Voronov Y V 2018 The Astrophysical Journal868 86 [9] Asplund M 2005 Annual Review of Astronomy and Astrophysics43 481 [10] Xu S, Zuckerman B, Dufour P, Young E D, Klein B and Jura M 2017 The Astrophysical Journal Letters836 L7 [11] Flannery M R 1969 J. Phys. B: Atom. Mol. Phys.2 913 [12] Birely J H and McNeal R J 1972 Phys. Rev. A5 257 [13] Bell K L, Kingston A E and McIlveen W A 1973 J. Phys. B: Atom. Mol. Phys.6 1246 [14] Bell K L, Kingston A E and Winter T G 1974 J. Phys. B: Atom. Mol. Phys.7 1339 [15] Sauers I and Thomas E W 1974 Phys. Rev. A10 822 [16] Bell K L, Kingston A E and Winter T G 1976 J. Phys. B: Atom. Mol. Phys.9 L279 [17] Benoit C and Gauyacq J P 1976 J. Phys. B: Atom. Mol. Phys.9 L391 [18] Grosser J and Krüger W 1984 Z. Phys. A318 25 [19] Van Zyl B and Gealy M W 1987 Phys. Rev. A35 3741 [20] Kimura M and Lane N F 1988 Phys. Rev. A37 2900 [21] Hildenbrand R, Grun N and Scheid W 1995 J. Phys. B: Atom. Mol. Phys.28 4781 [22] Belyaev A K 2015 Phys. Rev. A91 062709 [23] Frémont F and Belyaev A K 2017 J. Phys. B: Atom. Mol. Opt. Phys.50 045201 [24] Ast H, Ludde H J and Dreizler R M 1990 J. Phys. B: Atom. Mol. Opt. Phys.23 2305 [25] Allard N F, Kielkopf J F, Xu S, Guillon G, Mehnen B, Linguerri R, Al Mogren M M, Hochlaf M and Hubeny I 2020 Monthly Notices of the Royal Astronomical Society494 868 [26] Buenker R J and Phillips R A 1985 Journal of Molecular Structure: THEOCHEM123 291 [27] Krebs S and Buenker R J 1995 The Journal of Chemical Physics103 5613 [28] Zygelman B and Dalgarno A 1986 Phys. Rev. A33 3853 [29] Kimura M and Lane N F 1989 Advances In Atomic, Molecular, and Optical Physics26 79 [30] Johnson B R 1973 J. Comput. Phys.13 445 [31] Gargaud M, McCarroll R and Valiron P 1987 J. Phys. B: Atom. Mol. Phys.20 1555 [32] Bransden B H and McDowell M R C 1992 Charge exchange and the theory of ion-atom collisions (Oxford: Clarendon) [33] Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A58 1162 [34] Errea L F, Mendez L and Riera A 1982 J. Phys. B: Atom. Mol. Phys.15 101 [35] Errea L F, Harel C, Jouini H, Mendez L, Pons B and Riera A 1994 J. Phys. B: Atom. Mol. Opt. Phys.27 3603 [36] Dunning T H 1989 The Journal of Chemical Physics90 1007 [37] Woon D E and Dunning T H 1994 The Journal of Chemical Physics100 2975 [38] Kramida A, Ralchenko, Yu, Reader, J. and NIST ASD Team 2019 [Online]. Available: https://physics.nist.gov/asd, National Institute of Standards and Technology, Gaithersburg, MD [39] Herrero B, Cooper I L and Dickinson A S 1996 JJ. Phys. B: Atom. Mol. Opt. Phys.29 5583 [40] Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P and Buenker R J 2019 J. Phys. B: Atom. Mol. Opt. Phys.52 075202
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.