Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 014101    DOI: 10.1088/1674-1056/27/1/014101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A broadband cross-polarization conversion anisotropic metasurface based on multiple plasmon resonances

M Ismail Khan1,2, Farooq A Tahir1
1 Research Institute for Microwave and Millimeter-wave Studies(RIMMS), National University of Sciences and Technology(NUST), Islamabad, Pakistan;
2 Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock Campus, Pakistan
Abstract  A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic double-slit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x-or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5-15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.
Keywords:  cross-polarization conversion      anisotropy      metasurface      plasmon resonances  
Received:  30 May 2017      Revised:  25 July 2017      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Corresponding Authors:  Farooq A Tahir     E-mail:  farooq.tahir@seecs.edu.pk

Cite this article: 

M Ismail Khan, Farooq A Tahir A broadband cross-polarization conversion anisotropic metasurface based on multiple plasmon resonances 2018 Chin. Phys. B 27 014101

[1] Saleh B E A and Teich M C 2007 Fundamentals of Photonics (New Jersey: Wiley)
[2] Veselago V G 1968 Soviet Phys. Uspekhi 10 509
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Yu N and Capasso F 2014 Nat. Mater. 13 139
[5] Qiong H E, Sun S L and Zhou L 2015 Physics 44 366
[6] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[7] Pfeiffer C and Grbic A 2014 Phys. Rev. Appl. 2 044011
[8] Xia R, Jing X, Gui X, Tian Y and Hong Z 2017 Opt. Mater. Express 7 977
[9] Li R, Guo Z, Wang W, Zhang J, Zhang A, Liu J and Gao J 2014 Opt. Express 22 27968
[10] Zhao Y, Cao X, Gao J, Liu X and Li S 2016 Opt. Express 24 11208
[11] Song K, Liu Y, Luo C and Zhao X 2014 J. Phys. D: App. Phys. 47 505104
[12] Ye Y and He S 2010 Appl. Phys. Lett. 96 203501
[13] Khan M I, Fraz Q and Tahir F A 2017 J. Appl. Phys. 121 045103
[14] Shi J H, Ma H F, Guan C Y, Wang Z P and Cui T J 2014 Phys. Rev. B 89 165128
[15] Gao X, Yu X Y, Cao W P, Jiang Y N and Yu X H 2016 Chin. Phys. B 25 128102
[16] Wu S, Huang X J, Xiao B X, Yan J and Yang H L Y 2014 Chin. Phys. B 23 127805
[17] Zhu H L, Cheung S W, Chung K L and Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615
[18] Yu N, Aieta F, Genevet P, Kats M A Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[19] Doumanis E, Goussetis G, Gomez-Tornero J L, Cahill R and Fusco V 2012 IEEE Trans. Antennas Propag. 60 212
[20] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K and Chen H T 2013 Science 340 1304
[21] Li Z, Mutlu M and Ozbay E 2014 J. Phys. D: Appl. Phys. 47 075107
[22] Wang Y H, Shao J, Li J, Zhu M J, Li J, Zhou L and Dong Z G 2015 J. Phys. D: Appl. Phys. 48 485306
[23] Tremain B, Rance H J, Hibbins A P and Sambles J R 2015 Sci. Rep. 5 9366
[24] Chin J Y, Lu M and Cui T J 2008 App. Phys. Lett. 93 251903
[25] Wei Z, Cao Y, Fan Y, Yu X and Li H 2011 App. Phys. Lett. 99 221907
[26] Feng M, Wang J, Ma H, Mo W, Ye H and Qu S 2013 J. Appl. Phys. 114 074508
[27] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[28] Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A and Li Y 2014 J Appl. Phys. 115 154504
[29] Ma H F, Wang G Z, Kong G S and Cui T J 2014 Opt. Mat. Express 4 1717
[30] Shi H, Li J, Zhang A, Wang J and Xu Z 2014 Opt. Express 22 20973
[31] Kuester E F, Mohamed M A, Piket-May M and Holloway C L 2003 IEEE Trans. Antennas Propag. 51 2641
[32] Sievenpiper D, Zhang L, Broas R F, Alexopolous N G and Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[33] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
[34] Simovski C R, de Maagt P and Melchakova I V 2005 IEEE Trans. Antennas Propag. 53 908
[35] De Cos M E and Las-Heras F 2015 Appl. Phys. A 118 699
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[6] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[9] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[10] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[14] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[15] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
No Suggested Reading articles found!