Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057501    DOI: 10.1088/1674-1056/acb9ec
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80

Danrong Xiong(熊丹荣)1,2, Yuhao Jiang(蒋宇昊)1, Daoqian Zhu(朱道乾)1, Ao Du(杜奥)1, Zongxia Guo(郭宗夏)1, Shiyang Lu(卢世阳)3, Chunxu Wang(王春旭)3, Qingtao Xia(夏清涛)3, Dapeng Zhu(朱大鹏)1,3,†, and Weisheng Zhao(赵巍胜)1,2,3,‡
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
2 Hefei Innovation Research Institute, Beihang University, Hefei 230013, China;
3 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China
Abstract  Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect (AHE), magnetic spin Hall effect, and chiral anomaly. The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn$_{3}X$ family such as Mn$_{3}$Sn and Mn$_{3}$Ge. Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics, but also have great importance for driving the nontrivial topological properties towards practical applications. Here, we report remarkable AHE, anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir$_{20}$Mn$_{80}$ antiferromagnet, which is one of the most widely used antiferromagnetic materials in industrial spintronics. The ab initio calculations suggest that the Ir$_{4}$Mn$_{16}$ (IrMn$_{4}$) or Mn$_{3}$Ir nanocrystals hold nontrivial electronic band structures, which may contribute to the observed intriguing magnetotransport properties in the Ir$_{20}$Mn$_{80}$. Further, we demonstrate the spin-orbit torque switching of the antiferromagnetic Ir$_{20}$Mn$_{80}$ by the spin Hall current of Pt. The presented results highlight a great potential of the magnetron-sputtered Ir$_{20}$Mn$_{80}$ film for exploring the topological antiferromagnet-based physics and spintronics applications.
Keywords:  non-collinear antiferromagnets      anomalous Hall effect      magnetization switching      spin-orbit torque  
Received:  27 November 2022      Revised:  19 January 2023      Accepted manuscript online:  08 February 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the Tencent Foundation through the XPLORER PRIZE, the National Key Research and Development Program of China (Grant Nos. 2018YFB0407602 and 2021YFB3601303), and the National Natural Science Foundation of China (Grant Nos. 61627813, 11904017, 92164206, and 61571023).
Corresponding Authors:  Dapeng Zhu, Weisheng Zhao     E-mail:  zhudp@buaa.edu.cn;weisheng.zhao@buaa.edu.cn

Cite this article: 

Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜) Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80 2023 Chin. Phys. B 32 057501

[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[2] Khymyn R, Lisenkov I, Tiberkevich V, Ivanov B A and Slavin A 2017 Sci. Rep. 7 43705
[3] Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, Hühner R, Liedke M O, Fassbender J, Schmidt O G and Makarov D 2017 Nat. Commun. 8 13985
[4] Olejník K, Seifert T, Kašpar Z, et al. 2018 Sci. Adv. 4 eaar3566
[5] Lopez-Dominguez V, Almasi H and Amiri P K 2019 Phys. Rev. Appl. 11 024019
[6] Olejník K, Schuler V, Marti X, Novák V, Kašpar Z, Wadley P, Campion R P, Edmonds K W, Gallagher B L, Garces J, Baumgartner M, Gambardella P and Jungwirth T 2017 Nat. Commun. 8 15434
[7] Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J and Yang H 2019 Science 366 1125
[8] Ross A, Lebrun R, Gomonay O, Grave D A, Kay A, Baldrati L, Becker S, Qaiumzadeh A, Ulloa C, Jakob G, Kronast F, Sinova J, Duine R, Brataas A, Rothschild A and Kläui M 2020 Nano Lett. 20 306
[9] Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S and Shi J 2020 Nature 578 70
[10] Vaidya P, Morley S A, van Tol J, Liu Y, Cheng R, Brataas A, Lederman D and del Barco E 2020 Science 368 160
[11] Zhu D, Zhang T, Fu X, Hao R, Hamzić A, Yang H, Zhang X, Zhang H, Du A, Xiong D, Shi K, Yan S, Zhang S, Fert A and Zhao W 2022 Phys. Rev. Lett. 128 217702
[12] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[13] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090
[14] Higo T, Man H, Gopman D B, et al. 2018 Nat. Photon. 12 73
[15] Zhang Y, Sun Y, Yang H, Železný J, Parkin S P P, Felser C and Yan B 2017 Phys. Rev. B 95 075128
[16] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627
[17] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870
[18] Chen H, Niu Q and MacDonald A H 2014 Phys. Rev. Lett. 112 017205
[19] Kübler J and Felser C 2014 Europhys. Lett. 108 67001
[20] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P and Yan B 2017 New J. Phys. 19 015008
[21] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085
[22] Tsai H, Higo T, Kondou K, et al. 2020 Nature 580 608
[23] Higo T, Qu D, Li Y, Chien C L, Otani Y and Nakatsuji S 2018 Appl. Phys. Lett. 113 202402
[24] Mukherjee J, Suraj T S, Basumatary H, Sethupathi K and Raman K V 2021 Phys. Rev. Mater. 5 014201
[25] Chen H, Feng Z, Yan H, Qin P, Zhou X, Guo H, Wang X, Wu H, Zhang X, Meng Z and Liu Z 2021 Phys. Rev. B 104 064428
[26] Wadley P, Howells B, Železný J, et al. 2016 Science 351 587
[27] Grzybowski M J, Wadley P, Edmonds K W, Beardsley R, Hills V, Campion R P, Gallagher B L, Chauhan J S, Novak V, Jungwirth T, Maccherozzi F and Dhesi S S 2017 Phys. Rev. Lett. 118 057701
[28] Godinho J, Reichlová H, Kriegner D, et al. 2018 Nat. Commun. 9 4686
[29] Bodnar S Y, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Kläui M and Jourdan M 2018 Nat. Commun. 9 348
[30] Zhou X F, Chen X Z, Zhang J, Li F, Shi G Y, Sun Y M, Saleem M S, You Y F, Pan F and Song C 2019 Phys. Rev. Appl. 11 054030
[31] Meinert M, Graulich D and Matalla-Wagner T 2018 Phys. Rev. Appl. 9 064040
[32] Železný J, Gao H, Výborný K, Zemen J, Mašek J, Manchon A, Wunderlich J, Sinova J and Jungwirth T 2014 Phys. Rev. Lett. 113 157201
[33] Zelezný J, Gao H, Manchon A, Freimuth F, Mokrousov Y, Zemen J, Mašek J, Sinova J and Jungwirth T 2017 Phys. Rev. B 95 014403
[34] Moriyama T, Oda K, Ohkochi T, Kimata M and Ono T 2018 Sci. Rep. 8 14167
[35] Baldrati L, Gomonay O, Ross A, et al. 2019 Phys. Rev. Lett. 123 177201
[36] Schreiber F, Baldrati L, Schmitt C, Ramos R, Saitoh E, Lebrun R and Kläui M 2020 Appl. Phys. Lett. 117 082401
[37] Baldrati L, Schmitt C, Gomonay O, Lebrun R, Ramos R, Saitoh E, Sinova J and Kläui M 2020 Phys. Rev. Lett. 125 077201
[38] Cheng Y, Yu S, Zhu M, Hwang J and Yang F 2020 Phys. Rev. Lett. 124 027202
[39] Zhang P, Finley J, Safi T and Liu L 2019 Phys. Rev. Lett. 123 247206
[40] Cogulu E, Statuto N N, Cheng Y, Yang F, Chopdekar R V, Ohldag H and Kent A D 2021 Phys. Rev. B 103 L100405
[41] Chiang C C, Huang S Y, Qu D, Wu P H and Chien C L 2019 Phys. Rev. Lett. 123 227203
[42] Meer H, Schreiber F, Schmitt C, Ramos R, Saitoh E, Gomonay O, Sinova J, Baldrati L and Kläui M 2021 Nano Lett. 21 114
[43] Takeuchi Y, Yamane Y, Yoon J Y, Itoh R, Jinnai B, Kanai S, Ieda J i, Fukami S and Ohno H 2021 Nat. Mater. 20 1364
[44] Higo T, Kondou K, Nomoto T, Shiga M, Sakamoto S, Chen X, Nishio-Hamane D, Arita R, Otani Y, Miwa S and Nakatsuji S 2022 Nature 607 474
[45] Deng Y, Liu X, Chen Y, Du Z, Jiang N, Shen C, Zhang E, Zheng H, Lu H Z and Wang K 2022 Natl. Sci. Rev. 10 nwac154
[46] DuttaGupta S, Kurenkov A, Tretiakov O A, Krishnaswamy G, Sala G, Krizakova V, Maccherozzi F, Dhesi S S, Gambardella P, Fukami S and Ohno H 2020 Nat. Commun. 11 5715
[47] Shi J, Lopez-Dominguez V, Garesci F, Wang C, Almasi H, Grayson M, Finocchio G and Khalili Amiri P 2020 Nat. Electron. 3 92
[48] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE 109 1398
[49] Stobiecki T, Kanak J, Wrona J, Czapkiewicz M, Kim C G, Kim C O, Tsunoda M and Takahashi M 2004 Phys. Status Solidi A 201 1621
[50] Markou A, Taylor J M, Kalache A, Werner P, Parkin S S P and Felser C 2018 Phys. Rev. Mater. 2 051001
[51] Qian J F, Nayak A K, Kreiner G, Schnelle W and Felser C 2014 J. Phys. D: Appl. Phys. 47 305001
[52] Rinaldi C, Baldrati L, Loreto M D, Asa M, Bertacco R and Cantoni M 2018 IEEE Trans. Magn. 54 1
[53] Hoshino K, Nakatani R, Hoshiya H, Sugita Y and Tsunashima S 1996 Jpn. J. Appl. Phys. 35 607
[54] Fuke H N, Saito K, Kamiguchi Y, Iwasaki H and Sahashi M 1997 J. Appl. Phys. 81 4004
[55] Kohn A, Kovács A, Fan R, McIntyre G J, Ward R C C and Goff J P 2013 Sci. Rep. 3 2412
[56] Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z and Liu Z 2020 ACS Nano 14 6242
[57] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603
[58] Iwaki H, Kimata M, Ikebuchi T, Kobayashi Y, Oda K, Shiota Y, Ono T and Moriyama T 2020 Appl. Phys. Lett. 116 022408
[59] Qiao J, Zhou J, Yuan Z and Zhao W 2018 Phys. Rev. B 98 214402
[60] Yamaoka T 1974 J. Phys. Soc. Jpn. 36 445
[61] Mendes J B S, Cunha R O, Alves Santos O, Ribeiro P R T, Machado F L A, Rodríguez-Suárez R L, Azevedo A and Rezende S M 2014 Phys. Rev. B 89 140406
[62] Dunz M, Matalla-Wagner T and Meinert M 2020 Phys. Rev. Res. 2 013347
[63] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[64] Matalla-Wagner T, Rath M F, Graulich D, Schmalhorst J M, Reiss G and Meinert M 2019 Phys. Rev. Appl. 12 064003
[65] Vallejo-Fernandez G, Aley N P, Chapman J N and O'Grady K 2010 Appl. Phys. Lett. 97 222505
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[5] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[6] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[7] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[8] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[9] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[10] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[11] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[12] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[13] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[14] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[15] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
No Suggested Reading articles found!