CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80 |
Danrong Xiong(熊丹荣)1,2, Yuhao Jiang(蒋宇昊)1, Daoqian Zhu(朱道乾)1, Ao Du(杜奥)1, Zongxia Guo(郭宗夏)1, Shiyang Lu(卢世阳)3, Chunxu Wang(王春旭)3, Qingtao Xia(夏清涛)3, Dapeng Zhu(朱大鹏)1,3,†, and Weisheng Zhao(赵巍胜)1,2,3,‡ |
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 2 Hefei Innovation Research Institute, Beihang University, Hefei 230013, China; 3 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China |
|
|
Abstract Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect (AHE), magnetic spin Hall effect, and chiral anomaly. The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn$_{3}X$ family such as Mn$_{3}$Sn and Mn$_{3}$Ge. Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics, but also have great importance for driving the nontrivial topological properties towards practical applications. Here, we report remarkable AHE, anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir$_{20}$Mn$_{80}$ antiferromagnet, which is one of the most widely used antiferromagnetic materials in industrial spintronics. The ab initio calculations suggest that the Ir$_{4}$Mn$_{16}$ (IrMn$_{4}$) or Mn$_{3}$Ir nanocrystals hold nontrivial electronic band structures, which may contribute to the observed intriguing magnetotransport properties in the Ir$_{20}$Mn$_{80}$. Further, we demonstrate the spin-orbit torque switching of the antiferromagnetic Ir$_{20}$Mn$_{80}$ by the spin Hall current of Pt. The presented results highlight a great potential of the magnetron-sputtered Ir$_{20}$Mn$_{80}$ film for exploring the topological antiferromagnet-based physics and spintronics applications.
|
Received: 27 November 2022
Revised: 19 January 2023
Accepted manuscript online: 08 February 2023
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the Tencent Foundation through the XPLORER PRIZE, the National Key Research and Development Program of China (Grant Nos. 2018YFB0407602 and 2021YFB3601303), and the National Natural Science Foundation of China (Grant Nos. 61627813, 11904017, 92164206, and 61571023). |
Corresponding Authors:
Dapeng Zhu, Weisheng Zhao
E-mail: zhudp@buaa.edu.cn;weisheng.zhao@buaa.edu.cn
|
Cite this article:
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜) Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80 2023 Chin. Phys. B 32 057501
|
[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [2] Khymyn R, Lisenkov I, Tiberkevich V, Ivanov B A and Slavin A 2017 Sci. Rep. 7 43705 [3] Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, Hühner R, Liedke M O, Fassbender J, Schmidt O G and Makarov D 2017 Nat. Commun. 8 13985 [4] Olejník K, Seifert T, Kašpar Z, et al. 2018 Sci. Adv. 4 eaar3566 [5] Lopez-Dominguez V, Almasi H and Amiri P K 2019 Phys. Rev. Appl. 11 024019 [6] Olejník K, Schuler V, Marti X, Novák V, Kašpar Z, Wadley P, Campion R P, Edmonds K W, Gallagher B L, Garces J, Baumgartner M, Gambardella P and Jungwirth T 2017 Nat. Commun. 8 15434 [7] Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J and Yang H 2019 Science 366 1125 [8] Ross A, Lebrun R, Gomonay O, Grave D A, Kay A, Baldrati L, Becker S, Qaiumzadeh A, Ulloa C, Jakob G, Kronast F, Sinova J, Duine R, Brataas A, Rothschild A and Kläui M 2020 Nano Lett. 20 306 [9] Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S and Shi J 2020 Nature 578 70 [10] Vaidya P, Morley S A, van Tol J, Liu Y, Cheng R, Brataas A, Lederman D and del Barco E 2020 Science 368 160 [11] Zhu D, Zhang T, Fu X, Hao R, Hamzić A, Yang H, Zhang X, Zhang H, Du A, Xiong D, Shi K, Yan S, Zhang S, Fert A and Zhao W 2022 Phys. Rev. Lett. 128 217702 [12] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [13] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090 [14] Higo T, Man H, Gopman D B, et al. 2018 Nat. Photon. 12 73 [15] Zhang Y, Sun Y, Yang H, Železný J, Parkin S P P, Felser C and Yan B 2017 Phys. Rev. B 95 075128 [16] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627 [17] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 [18] Chen H, Niu Q and MacDonald A H 2014 Phys. Rev. Lett. 112 017205 [19] Kübler J and Felser C 2014 Europhys. Lett. 108 67001 [20] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P and Yan B 2017 New J. Phys. 19 015008 [21] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085 [22] Tsai H, Higo T, Kondou K, et al. 2020 Nature 580 608 [23] Higo T, Qu D, Li Y, Chien C L, Otani Y and Nakatsuji S 2018 Appl. Phys. Lett. 113 202402 [24] Mukherjee J, Suraj T S, Basumatary H, Sethupathi K and Raman K V 2021 Phys. Rev. Mater. 5 014201 [25] Chen H, Feng Z, Yan H, Qin P, Zhou X, Guo H, Wang X, Wu H, Zhang X, Meng Z and Liu Z 2021 Phys. Rev. B 104 064428 [26] Wadley P, Howells B, Železný J, et al. 2016 Science 351 587 [27] Grzybowski M J, Wadley P, Edmonds K W, Beardsley R, Hills V, Campion R P, Gallagher B L, Chauhan J S, Novak V, Jungwirth T, Maccherozzi F and Dhesi S S 2017 Phys. Rev. Lett. 118 057701 [28] Godinho J, Reichlová H, Kriegner D, et al. 2018 Nat. Commun. 9 4686 [29] Bodnar S Y, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Kläui M and Jourdan M 2018 Nat. Commun. 9 348 [30] Zhou X F, Chen X Z, Zhang J, Li F, Shi G Y, Sun Y M, Saleem M S, You Y F, Pan F and Song C 2019 Phys. Rev. Appl. 11 054030 [31] Meinert M, Graulich D and Matalla-Wagner T 2018 Phys. Rev. Appl. 9 064040 [32] Železný J, Gao H, Výborný K, Zemen J, Mašek J, Manchon A, Wunderlich J, Sinova J and Jungwirth T 2014 Phys. Rev. Lett. 113 157201 [33] Zelezný J, Gao H, Manchon A, Freimuth F, Mokrousov Y, Zemen J, Mašek J, Sinova J and Jungwirth T 2017 Phys. Rev. B 95 014403 [34] Moriyama T, Oda K, Ohkochi T, Kimata M and Ono T 2018 Sci. Rep. 8 14167 [35] Baldrati L, Gomonay O, Ross A, et al. 2019 Phys. Rev. Lett. 123 177201 [36] Schreiber F, Baldrati L, Schmitt C, Ramos R, Saitoh E, Lebrun R and Kläui M 2020 Appl. Phys. Lett. 117 082401 [37] Baldrati L, Schmitt C, Gomonay O, Lebrun R, Ramos R, Saitoh E, Sinova J and Kläui M 2020 Phys. Rev. Lett. 125 077201 [38] Cheng Y, Yu S, Zhu M, Hwang J and Yang F 2020 Phys. Rev. Lett. 124 027202 [39] Zhang P, Finley J, Safi T and Liu L 2019 Phys. Rev. Lett. 123 247206 [40] Cogulu E, Statuto N N, Cheng Y, Yang F, Chopdekar R V, Ohldag H and Kent A D 2021 Phys. Rev. B 103 L100405 [41] Chiang C C, Huang S Y, Qu D, Wu P H and Chien C L 2019 Phys. Rev. Lett. 123 227203 [42] Meer H, Schreiber F, Schmitt C, Ramos R, Saitoh E, Gomonay O, Sinova J, Baldrati L and Kläui M 2021 Nano Lett. 21 114 [43] Takeuchi Y, Yamane Y, Yoon J Y, Itoh R, Jinnai B, Kanai S, Ieda J i, Fukami S and Ohno H 2021 Nat. Mater. 20 1364 [44] Higo T, Kondou K, Nomoto T, Shiga M, Sakamoto S, Chen X, Nishio-Hamane D, Arita R, Otani Y, Miwa S and Nakatsuji S 2022 Nature 607 474 [45] Deng Y, Liu X, Chen Y, Du Z, Jiang N, Shen C, Zhang E, Zheng H, Lu H Z and Wang K 2022 Natl. Sci. Rev. 10 nwac154 [46] DuttaGupta S, Kurenkov A, Tretiakov O A, Krishnaswamy G, Sala G, Krizakova V, Maccherozzi F, Dhesi S S, Gambardella P, Fukami S and Ohno H 2020 Nat. Commun. 11 5715 [47] Shi J, Lopez-Dominguez V, Garesci F, Wang C, Almasi H, Grayson M, Finocchio G and Khalili Amiri P 2020 Nat. Electron. 3 92 [48] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE 109 1398 [49] Stobiecki T, Kanak J, Wrona J, Czapkiewicz M, Kim C G, Kim C O, Tsunoda M and Takahashi M 2004 Phys. Status Solidi A 201 1621 [50] Markou A, Taylor J M, Kalache A, Werner P, Parkin S S P and Felser C 2018 Phys. Rev. Mater. 2 051001 [51] Qian J F, Nayak A K, Kreiner G, Schnelle W and Felser C 2014 J. Phys. D: Appl. Phys. 47 305001 [52] Rinaldi C, Baldrati L, Loreto M D, Asa M, Bertacco R and Cantoni M 2018 IEEE Trans. Magn. 54 1 [53] Hoshino K, Nakatani R, Hoshiya H, Sugita Y and Tsunashima S 1996 Jpn. J. Appl. Phys. 35 607 [54] Fuke H N, Saito K, Kamiguchi Y, Iwasaki H and Sahashi M 1997 J. Appl. Phys. 81 4004 [55] Kohn A, Kovács A, Fan R, McIntyre G J, Ward R C C and Goff J P 2013 Sci. Rep. 3 2412 [56] Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z and Liu Z 2020 ACS Nano 14 6242 [57] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603 [58] Iwaki H, Kimata M, Ikebuchi T, Kobayashi Y, Oda K, Shiota Y, Ono T and Moriyama T 2020 Appl. Phys. Lett. 116 022408 [59] Qiao J, Zhou J, Yuan Z and Zhao W 2018 Phys. Rev. B 98 214402 [60] Yamaoka T 1974 J. Phys. Soc. Jpn. 36 445 [61] Mendes J B S, Cunha R O, Alves Santos O, Ribeiro P R T, Machado F L A, Rodríguez-Suárez R L, Azevedo A and Rezende S M 2014 Phys. Rev. B 89 140406 [62] Dunz M, Matalla-Wagner T and Meinert M 2020 Phys. Rev. Res. 2 013347 [63] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [64] Matalla-Wagner T, Rath M F, Graulich D, Schmalhorst J M, Reiss G and Meinert M 2019 Phys. Rev. Appl. 12 064003 [65] Vallejo-Fernandez G, Aley N P, Chapman J N and O'Grady K 2010 Appl. Phys. Lett. 97 222505 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|