Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048202    DOI: 10.1088/1674-1056/ac21c2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand

Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.
Keywords:  DFT/TDDFT      schiff base ligand      excited state intramolecular double proton transfer  
Received:  16 July 2021      Revised:  15 August 2021      Accepted manuscript online:  27 August 2021
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant No. 11874180), and the Young and Middle-aged Scientific and Technological Innovation leaders and Team Projects in Jilin Province, China (Grant No. 20200301020RQ).
Corresponding Authors:  Ying Shi     E-mail:  shi_ying@jlu.edu.cn

Cite this article: 

Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英) Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand 2022 Chin. Phys. B 31 048202

[1] Karas L J, Wu C H, Ottosson H and Wu J I 2020 Chem. Sci. 11 10071
[2] Sun C F, Li Y, Li B, Han J H, Zhou Q, Yin H and Shi Y 2020 J. Mol. Liq. 297 111937
[3] Mu X J, Wang J G and Sun M T 2019 J. Phys. Chem. C 123 14132
[4] Weller A 1956 Z. Elektrochem. 60 1144
[5] Yang G, Chen K F, Wang G and Yang D P 2020 Chin. Phys. B 29 103103
[6] Yang Y G, Liu Y, Liu Y F and Jiang K 2020 J. Lumin. 227 117587
[7] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201
[8] Wang J M, Liu Q and Yang D P 2020 Sci. Rep. 10 5119
[9] Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D and Ma Y 2005 J. Am. Chem. Soc. 127 14152
[10] Xu L, Zhang T J, Zhang Q L and Yang D P 2020 Chin. Phys. B 29 053102
[11] Zhou Q, Du C, Yang L, Zhao M, Dai Y and Song P 2017 J. Phys. Chem. A 121 4645
[12] Yin H and Shi Y 2018 Chin. Phys. B 27 058201
[13] Taylor C A, El-Bayoumi M A and Kasha M 1969 Proc. Natl. Acad. Sci. USA 63 253
[14] Tanner C, Manca C and Leutwyler S 2003 Science 302 1736
[15] Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P and Ma F 2015 Phys. Chem. Chem. Phys. 17 1142
[16] Chou P T, Wei C Y, Chang C P and Chiu C H 1995 J. Am. Chem. Soc. 117 7259
[17] Ma C, Yang Y G, Li C Z and Liu Y F 2015 J. Phys. Chem. A 119 12686
[18] Takeuchi S and Tahara T 2007 Proc. Natl. Acad. Sci. USA 104 5285
[19] Jayachandrabal B and Thirugnanasambandam S 2020 J. Microencapsul. 37 29
[20] Sahraei A, Kargar H, Hakimi M and Tahir M N 2017 J. Mol. Struct. 1149 576
[21] Kenan B and Metin Ö 2020 J. Mol. Struct. 1202 127266
[22] Petar T, Stela G, Petia P, Rusi R, Boris S and Anton G 2020 New J. Chem. 44 15081
[23] Youka B, Yuta T, Masahiro K, Tatsuhiko Y and Shigeki M 2021 ACS Catal. 11 2663
[24] Gao B J, Zhang D D and Don T T 2015 J. Phys. Chem. C 119 16403
[25] Weng Q H, Yi J Q, Chen X P, Luo D W, Wang Y D, Sun W M, Kang J and Zhong Z 2020 ACS Omega. 5 24864
[26] Mu X J and Sun M T 2020 Appl. Phys. Lett. 117 091601
[27] Yang Y G, Liu Y, Zhai H S, Jia X L, He Y Y, Ma Q F, Zhang R G, Liu Y F and Jiang K 2020 J. Lumin. 223 117224
[28] Zhu W T, Ma S H, Fang J P, Ma Z Y and Zhu H P 2014 Chin. Phys. B 23 060505
[29] Samira G D, Hamid K and Carolina E S 2017 Polyhedron 133 48
[30] Samira G D, Janet S and Carolina E S 2020 J. Mol. Struct. 1219 129060
[31] Shang C J, Sun C F, Li Y Z 2021 J. Mol. Struct. 1236 130370
[32] Shang X H, Han D M, Zhan Q, Zhang G, and Li D F 2014 Organometallics 33 3300
[33] Ding J X, D H Shi, Sun J F and Liu Y F 2008 J. Phys. Chem. A 112 6244
[34] Shang C J, Cao Y J, Sun C F, Li Y Z 2021 J. Lumin. 235 118059
[35] Haroldo C D S and Wagner B D A 2020 Chem. Phys. 528 110479
[36] Yang Y G, Zhai H S, Liu Y, Jia X L, He Y Y, Ma Q F, Zhang R G, Liu Y F and Jiang K 2019 J. Lumin. 216 116736
[37] Mónica A G, Norma F H, Marco G, Erasmo O B and Daniel G M 2010 J. Mol. Struct. 945 101
[38] Lyudmila O K, Svetlana V L and Victor V K 2021 Optik-International Journal for Light and Electron Optics 242 167156
[39] Song P, Li Y Z, Ma F C, Pullerits T and Sun M T 2013 J. Phys. Chem. C 117 15879
[40] Sidra K, Hasnain S, Khurshid A and Tariq M 2020 J. Mol. Liq. 316 113860
[41] Li X, Guo Y Y and Yang D P 2020 Theor. Chem. Acc. 139 181
[42] Feride A, Noureddine I and Aleksandr S K 2020 J. Mol. Model. 26 161
[43] Jan V, Gabriel D and Radek M 2012 Inorg. Chem. 51 1371
[44] Randi P A S, Moreira G M and Bettega M H F 2020 Phys. Rev. A 102 022812
[45] Andrew J N, Margaret J H, Matthew S S and Dean T F 2017 Nature 543 637
[46] Christian T 2018 Theor. Chem. Acc. 137 93
[47] Mao Y Z, Martin H G and Shao Y H 2018 Chem. Sci. 9 8598
[48] Li H, Han J H, Zhao H F, Liu X C, Luo Y, Shi Y, Liu C L, Jin M X and Ding D J 2019 J. Phys. Chem. Lett. 10 748
[49] Yang Y G, Li D L, Li C Z, Liu Y F and Jiang K 2018 J. Hazard. Mater. 341 93
[50] Lionel L, Norah M H and Neepa T M 2019 Phys. Rev. Lett. 123 083201
[51] Zhang Y Y, Shi Y and Li Y Z 2016 J Mater Sci:Mater Electron 27 7132
[1] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
No Suggested Reading articles found!