CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells |
Shu-Fang Ma(马淑芳)1,†, Lei Li(李磊)1,2, Qing-Bo Kong(孔庆波)1,2, Yang Xu(徐阳)1,2, Qing-Ming Liu(刘青明)1,2, Shuai Zhang(张帅)1,2, Xi-Shu Zhang(张西数)1,2, Bin Han(韩斌)1, Bo-Cang Qiu(仇伯仓)1, Bing-She Xu(许并社)1,3,‡, and Xiao-Dong Hao(郝晓东)1,§ |
1 Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; 2 School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; 3 Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction (XRD) and photoluminescence (PL), combined with the state-of-the-art aberration corrected scanning transmission electron microscopy (Cs-STEM) techniques. To facility our study, we grow two multiple quantum wells (MQWs) samples, which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs (sample A). Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface, and the effect of the GaAs insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale. Therefore, the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity, interface roughness, and further an enhanced optical performance of InGaAs/AlGaAs QWs.
|
Received: 02 March 2022
Revised: 09 May 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
07.79.-v
|
(Scanning probe microscopes and components)
|
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
Fund: X. H. gratefully acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 21902096) and the Scientific Research Foundation of Shaanxi University of Science and Technology (Grant No. 126061803). S. M. and B. X. thank the National Natural Science Foundation of China (Grant No. 21972103) and the Shanxi Provincial Key Innovative Research Team in Science and Technology (Grant No. 201703D111026). |
Corresponding Authors:
Shu-Fang Ma, Bing-She Xu, Xiao-Dong Hao
E-mail: mashufang@sust.edu.cn;xubs@tyut.edu.cn;hao.xiaodong@sust.edu.cn
|
Cite this article:
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东) Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells 2023 Chin. Phys. B 32 037801
|
[1] Moser A, Oosenbrug A, Latta E, Forster T and Gasser M 1991 Appl. Phys. Lett. 59 2642 [2] Sin Y, Lingley Z, Presser N, Brodie M, Ives N and Moss S C 2017 IEEE. J. Sel. Top. Quant. 23 1500813 [3] Zhang P, Song Y, Tian J, Zhang X and Zhang Z 2009 J. Appl. Phys. 105 053103 [4] Gerard J M and Le Roux G 1993 Appl. Phys. Lett. 62 3452 [5] Kaspi R and Evans K R 1995 Appl. Phys. Lett. 67 819 [6] Marmalyuk A, Govorkov O, Petrovsky A, Nikitin D, Padalitsa A, Bulaev P, Budkin I and Zalevsky I 2002 J. Cryst. Growth. 237 264 [7] Yuan H, Li L, Zhang J, Li Z, Zeng L, Wang Y, Qu Y, Ma X and Liu G 2019 Optik 176 295 [8] Chen S, Li W, Wu J, Jiang Q, Tang M, Shutts S, Elliott S N, Sobiesierski A, Seeds A J, Ross I, Smowton P M and Liu H 2016 Nat. Photonics 10 307 [9] Froyen S and Zunger A 1996 Phys. Rev. B 53 4570 [10] Toyoshima H, Niwa T, Yamazaki J and Okamoto A 1993 Appl. Phys. Lett. 63 821 [11] Ohtake A, Ozeki M, Terauchi M, Sato F and Tanaka M 2002 Appl. Phys. Lett. 80 3931 [12] Schowalter M, Rosenauer A and Gerthsen D 2006 Appl. Phys. Lett. 88 111906 [13] Huo D Y, Shi Z W, Zhang W, Tang S L and Peng C S 2017 Acta Phys. Sin. 66 068510 (in Chinese) [14] He Z, Wang H, Wang Q, Fan J, Zou Y and Ma X 2020 Opt. Mater 108 110227 [15] Wen Y, Wang Y and Nakano Y 2012 Appl. Phys. Lett. 100 053902 [16] Wen Y, Wang Y, Watanabe K, Sugiyama M and Nakano Y 2011 Appl. Phys. Express 4 122301 [17] Xu K, Huang L, Zhang Z, Zhao J, Zhang Z, Snyman L W and Swart J W 2018 Mat. Sci. Eng. B-Adv. 231 28 [18] Zhang B, Wang H, Wang X, Wang Q, Fan J, Zou Y and Ma X 2021 J. Alloy. Compd. 872 159470 [19] He X and Razeghi M 1993 J. Appl. Phys. 73 3284 [20] Dong H, Sun J, Ma S, Liang J, Lu T, Liu X and Xu B 2016 Nanoscale 8 6043 [21] Huynh S H, Ha M T H, Do H B, Nguyen T A, Luc Q H and Chang E Y 2018 Appl. Phys. Express 11 045503 [22] Pan Z, Wang Y, Zhuang Y, Lin Y, Zhou Z, Li L, Wu R and Wang Q 1999 Appl. Phys. Lett. 75 223 [23] Wang C, Goyal A, Menzel S, Calawa D, Spencer M, Connors M, McNulty D, Sanchez A, Turner G and Capasso F 2013 J. Cryst. Growth. 370 212 [24] Fujii H, Wang Y, Watanabe K, Sugiyama M and Nakano Y 2012 J. Cryst. Growth. 352 239 [25] Huang J Y, Shang L, Ma S F, Han B, Wei G D, Liu Q M, Hao X D, Shan H S and Xu B S 2020 Chin. Phys. B 29 010703 [26] Zhao Y, Huang J, Sun Y, Yu S, Li K and Dong J 2019 Appl. Phys. A-Mater. 125 117 [27] Singh J and Bajaj K K 1985 J. Appl. Phys. 57 5433 [28] Chen Y, Xu D, Xu K, Zhang N, Liu S, Zhao J, Luo Q, Snyman L W and Swart J W 2019 Chin. Phys. B 28 107801 [29] Dong H, Sun J, Ma S, Liang J, Lu T, Jia Z, Liu X and Xu B 2016 Phys. Chem. Chem. Phys. 18 6901 [30] Weman H, Sirigu L, Karlsson K F, Leifer K, Rudra A and Kapon E 2002 Appl. Phys. Lett. 81 2839 [31] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903 [32] Hao X, Chen C, Saito M, Yin D, Inoue K, Takami S, Adschiri T and Ikuhara Y 2018 Small 14 1801093 [33] Hao X, Zhang S, Xu Y, Tang L, Inoue K, Saito M, Ma S, Chen C, Xu B, Adschiri T and Ikuhara Y 2021 Nanoscale 13 10393 [34] Beyer A and Volz K 2019 Adv. Mater. Interfaces 6 1801951 [35] Han H, Beyer A, Jandieri K, Gries K, Duschek L, Stolz W and Volz K 2015 Micron 79 1 [36] Liu Q, Han D, Ma S, Hao X, Wei Y, Cao B, Zhang S, Hou Y, Shang L, Han B, Shan H, Yang Y and Xu B 2020 Appl. Phys. Lett. 117 212103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|