CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin pumping by higher-order dipole-exchange spin-wave modes |
Peng Wang(王鹏)1,2,† |
1 College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; 2 Advanced Optoelectronic Materials and Technologies Engineering Laboratory of Shandong Province, Qingdao 266061, China |
|
|
Abstract Spin pumping (SP) and inverse spin Hall effect (ISHE) driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated. The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry. Thanks to the high precision of the SP-ISHE detection, two sets of fine structures in the voltage spectrum are observed, which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films. One is the q = 0 point of each higher-order dispersion branch, and the other is the local minimum due to the interplay between the dipolar and exchange interactions. These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes, and are helpful for probing the multimode spin-wave spectrum.
|
Received: 07 June 2022
Revised: 28 July 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
75.30.Ds
|
(Spin waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904194). |
Corresponding Authors:
Peng Wang
E-mail: pwang7000@163.com
|
Cite this article:
Peng Wang(王鹏) Spin pumping by higher-order dipole-exchange spin-wave modes 2023 Chin. Phys. B 32 037601
|
[1] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [2] Cornelissen L J, Liu J, Duine R A, Youssef J Ben and van Wees B J 2015 Nat. Phys. 11 1022 [3] Madami M, Bonetti S, Consolo G, Tacchi S, Carlotti G, Gubbiotti G, Mancoff F B, Yar M A and Akerman J 2011 Nat. Nanotechnol. 6 635 [4] Fischer T, Kewenig M, Bozhko D A, Serga A A, Syvorotka I I, Ciubotaru F, Adelmann C, Hillebrands B and Chumak A V 2017 Appl. Phys. Lett. 110 152401 [5] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700 [6] Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B and Chumak A V 2018 Sci. Adv. 4 e1701517 [7] Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lägel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana S D, Dobrovolskiy O V, Brächer T, Pirro P and Chumak A V 2020 Nat. Electron. 3 765 [8] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430 [9] Bozhko D A, Serga A A, Clausen P, Vasyuchka V I, Heussner F, Melkov G A, Pomyalov A, L'vov V S and Hillebrands B 2016 Nat. Phys. 12 1057 [10] Bozhko D A, Clausen P, Melkov G A, L'vov V S, Pomyalov A, Vasyuchka V I, Chumak A V, Hillebrands B and Serga A A 2017 Phys. Rev. Lett. 118 237201 [11] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403 [12] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262 [13] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509 [14] Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S and Hillebrands B 2012 Appl. Phys. Lett. 100 082405 [15] Ando K, Ieda J, Sasage K, Takahashi S, Maekawa S and Saitoh E 2009 Appl. Phys. Lett. 94 262505 [16] Fukami M, Tateno Y, Sekiguchi K and Ando K 2016 Phys. Rev. B 93 184429 [17] Sandweg C W, Kajiwara Y, Chumak A V, Serga A A, Vasyuchka V I, Jungfleisch M B, Saitoh E and Hillebrands B 2011 Phys. Rev. Lett. 106 216601 [18] Ando K, An T and Saitoh E 2011 Appl. Phys. Lett. 99 092510 [19] Kurebayashi H, Dzyapko O, Demidov V E, Fang D, Ferguson A J and Demokritov S O 2011 Appl. Phys. Lett. 99 162502 [20] Ando K and Saitoh E 2012 Phys. Rev. Lett. 109 026602 [21] Hayashi H and Ando K 2018 Phys. Rev. Lett. 121 237202 [22] Van Hove L 1953 Phys. Rev. 89 1189 [23] Bassani F, Parravicini G P, Ballinger R A and Birman J L 1976 Phys. Today 29 58 [24] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 [25] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardiére G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802 [26] Zil'berman P, Golubev N and Temiryazev A 1990 J. Exp. Theor. Phys. 2 353 [27] Kalinikos B A and Slavin A N 1986 J. Phys. C: Solid State Phys. 19 7013 [28] Jorzick J, Krämer C, Demokritov S O, Hillebrands B, Bartenlian B, Chappert C, Decanini D, Rousseaux F, Cambril E, Sondergard E, Bailleul M, Fermon C and Slavin A N 2001 J. Appl. Phys. 89 7091 [29] Kalinikos B A 1980 IEE Proc. H Microwaves, Opt. Antennas 127 4 [30] Manuilov S A, Du C H, Adur R, Wang H L, Bhallamudi V P, Yang F Y and Hammel P C 2015 Appl. Phys. Lett. 107 042405 [31] Demidov V E, Hansen U H and Demokritov S O 2007 Phys. Rev. Lett. 98 157203 [32] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S and Saitoh E 2010 Appl. Phys. Lett. 97 172505 [33] Ritzmann U, Hinzke D, Kehlberger A, Guo E J, Kläui M and Nowak U 2015 Phys. Rev. B 92 174411 [34] Kikkawa T, Shen K, Flebus B, Duine R A, Uchida K, Qiu Z, Bauer G E W and Saitoh E 2016 Phys. Rev. Lett. 117 207203 [35] Sandweg C W, Kajiwara Y, Ando K, Saitoh E and Hillebrands B 2010 Appl. Phys. Lett. 97 252504 [36] Chen Y S, Lin J G, Huang S Y and Chien C L 2019 Phys. Rev. B 99 220402 [37] Schlömann E, Green J J and Milano U 1960 J. Appl. Phys. 31 S386 [38] Nguyen H T and Cottam M G 2014 Phys. Rev. B 89 144424 [39] Suhl H 1957 J. Phys. Chem. Solids 1 209 [40] Wiese G, Kabos P and Patton C E 1995 Phys. Rev. B 51 15085 [41] Neumann T, Serga A A, Vasyuchka V I and Hillebrands B 2009 Appl. Phys. Lett. 94 192502 [42] Klingler S, Chumak a V, Mewes T, Khodadadi B, Mewes C, Dubs C, Surzhenko O, Hillebrands B and Conca A 2015 J. Phys. D: Appl. Phys. 48 015001 [43] Yuan N F Q, Isobe H and Fu L 2019 Nat. Commun. 10 5769 [44] Cottam M G 1994 Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices (World Scientific) [45] Lin F, Zhang S, Zhao G, Li H, Zong W and Li S 2020 Chin. Phys. B 29 067601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|