Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124208    DOI: 10.1088/1674-1056/ac89e0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor

Tianqi Li(李天琦)1, Shujing Chen(陈淑静)2,†, and Chengyou Lin(林承友)1,‡
1 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
2 School of Materials Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China
Abstract  An aluminum (Al) based nearly guided-wave surface plasmon resonance (NGWSPR) sensor is investigated in the far-ultraviolet (FUV) region. By simultaneously optimizing the thickness of Al and dielectric films, the sensitivity of the optimized Al-based FUV-NGWSPR sensor increases from 183°/RIU to 309°/RIU, and its figure of merit rises from 26.47 RIU-1 to 32.59 RIU-1 when the refractive index of dielectric increases from 2 to 5. Compared with a traditional FUV-SPR sensor without dielectric, the optimized FUV-NGWSPR sensor can realize simultaneous improvement of sensitivity and figure of merit. In addition, the FUV-NGWSPR sensor with realistic materials (diamond, Ta2O5, and GaN) is also investigated, and 137.84%, 52.70%, and 41.89% sensitivity improvements are achieved respectively. This work proposes a method for performance improvement of FUV-SPR sensors by exciting nearly guided-wave, and could be helpful for the high-performance SPR sensor in the short-wavelength region.
Keywords:  surface plasmon resonance sensor      far-ultraviolet      nearly guided-wave      sensitivity  
Received:  25 December 2021      Revised:  10 August 2022      Accepted manuscript online:  16 August 2022
PACS:  42.81.Pa (Sensors, gyros)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  07.60.-j (Optical instruments and equipment)  
  95.85.Mt (Ultraviolet (10-300 nm))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805007 and 11547241).
Corresponding Authors:  Shujing Chen, Chengyou Lin     E-mail:  chenshujing@cugb.edu.cn;cylin@mail.buct.edu.cn

Cite this article: 

Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友) Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor 2022 Chin. Phys. B 31 124208

[1] Martin J, Proust J, Gerard D and Plain J 2013 Opt. Mater. Express 3 954
[2] Lakowicz J R, Shen B, Gryczynski Z, D'Auria S and Gryczynski I 2001 Biochem. Biophys. Res. Commun. 286 875
[3] Watanabe Y, Inami W and Kawata Y 2011 J. Appl. Phys. 109 023112
[4] Jha S K, Ahmed Z, Agio M, Ekinci Y and Löffler J F 2012 J. Am. Chem. Soc. 134 1966
[5] Norek M, Wlodarski M and Matysik P 2014 Curr. Appl. Phys. 14 1514
[6] Tanabe I, Shimizu M, Kawabata R, Katayama C and Fukui K 2019 Sens. Actuators A 301 111661
[7] Meng Q Q, Zhao X, Chen S J, Lin C Y, Ding Y C and Chen Z Y 2017 Chin. Phys. B 26 124213
[8] Beland P and Berini P 2017 Appl. Phys. A-Mater. 123 31
[9] Piliarik M, Párová L and Homola J 2009 Biosens. Bioelectron. 24 1399
[10] Farré M, Kantiani L and Barceló D 2007 Trends Anal. Chem. 26 1100
[11] Knight M W, King N S, Liu L F, Everitt H O, Nordlander P and Halas N J 2014 ACS Nano 8 834
[12] Kumamoto Y, Taguchi A, Honda M, Watanabe K, Saito Y and Kawata S 2014 ACS Photon. 1 598
[13] Goto T, Ikehata A, Morisawa Y and Ozaki Y 2013 J. Phys. Chem. A 117 2517
[14] Tanabe I, Tanaka Y Y, Ryoki T, Watari K, Goto T, Kikawada M, Inami W, Kawata Y and Ozaki Y 2016 Opt. Express 24 21886
[15] Tanabe I, Tanaka Y Y, Watari K, Hanulia T, Goto T, Inami W, Kawata Y and Ozaki Y 2017 Chem. Lett. 46 1560
[16] Rakić A D 1995 Appl. Opt. 34 4755
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Callcott T A and Arakawa E T 1975 Phys. Rev. B 11 2750
[19] Endriz J G and Spicer W E 1970 Phys. Rev. Lett. 24 64
[20] Tanabe I, Tanaka Y Y, Watari K, Hanulia T, Goto T, Inami W, Kawata Y and Ozaki Y 2017 Sci. Rep. 7 5934
[21] Moreira C, Wang Y S, Blair S, Chadwick E, Lee J Y, Oliveira L, Lima A and Cruz R S 2020 Opt. Lett. 45 4642
[22] Maharana P K, Jha R and Palei S 2014 Sens. Actuators B 190 494
[23] Lin C Y and Chen S J 2019 Opt. Commun. 445 155
[24] Alleyne C J, Kirk A G, McPhedran R C, Nicorovici N A P and Maystre D 2007 Opt. Express 15 8163
[25] Lahav A, Auslender M and Abdulhalim I 2008 Opt. Lett. 33 2539
[26] Shukla S, Sharma N K and Sajal V 2015 Sens. Actuators B 206 463
[27] Bao M, Li G, Jiang D, Cheng W and Ma X 2012 Appl. Phys. A 107 279
[28] Benkabou F and Chikhi M 2014 Phys. Status Solidi A 211 700
[29] Gwon H R and Lee S H 2010 Mater. Trans. 51 1150
[30] Phillip H R and Taft E A 1964 Phys. Rev. 136 A1445
[31] Marcos R D, Larruquert J I, Méndez J A and Aznárez J A 2016 Opt. Mater. Express 6 3622
[32] Pastrňák J and Roskovcová L 1966 Phys. Status Solidi 14 K5
[33] Daimon M and Masumura A 2007 Appl. Opt. 46 3811
[34] Chen S J and Lin C Y 2019 Opt. Commun. 435 102
[35] Moreira C, Wang Y S, Blair S, Carvalho I and Cruz R S 2020 Plasmonics 15 1891
[36] Shalabney A and Abdulhalim I 2011 Laser Photon. Rev. 5 571
[37] Vidal B and Vincent P 1984 Appl. Opt. 23 1794
[38] Shalabney A and Abdulhalim I 2010 Sens. Actuators A 159 24
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[4] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[5] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[6] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[7] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[8] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[9] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[10] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[11] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[12] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[13] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
No Suggested Reading articles found!