CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Origin of the low formation energy of oxygen vacancies in CeO2 |
Han Xu(许涵)1,2, Tongtong Shang(尚彤彤)1,2,‡, Xuefeng Wang(王雪锋)1,2, Ang Gao(高昂)1,2, and Lin Gu(谷林)1,2,3,† |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Oxygen vacancies play a crucial role in determining the catalytic properties of Ce-based catalysts, especially in oxidation reactions. The design of catalytic activity requires keen insight into oxygen vacancy formation mechanisms. In this work, we investigate the origin of oxygen vacancies in CeO2 from the perspective of electron density {via} high-energy synchrotron powder x-ray diffraction. Multipole refinement results indicate that there is no obvious hybridization between bonded Ce and O atoms in CeO2. Subsequent quantitative topological analysis of the experimental total electron density reveals the closed-shell interaction behavior of the Ce—O bond. The results of first-principles calculation indicate that the oxygen vacancy formation energy of CeO2 is the lowest among three commonly used redox catalysts. These findings indicate the relatively weak bond strength of the Ce—O bond, which induces a low oxygen vacancy formation energy for CeO2 and thus promotes CeO2 as a superior catalyst for oxidation reactions. This work provides a new direction for design of functional metal oxides with high oxygen vacancy concentrations.
|
Received: 17 April 2022
Revised: 21 May 2022
Accepted manuscript online:
|
PACS:
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
61.72.jd
|
(Vacancies)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: This work was supported by the Beijing Natural Science Foundation (Grant No. Z190010), the National Key R&D Program of China (Grant No. 2019YFA0308500), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), the Key Research Projects of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC035), and the National Natural Science Foundation of China (Grant Nos. 51421002, 51672307, 51991344, and 52025025). |
Corresponding Authors:
Lin Gu, Tongtong Shang
E-mail: l.gu@iphy.ac.cn;shangtt@iphy.ac.cn
|
Cite this article:
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林) Origin of the low formation energy of oxygen vacancies in CeO2 2022 Chin. Phys. B 31 107102
|
[1] Kamal M S, Razzak S A and Hossain M M 2016 Atmos. Environ. 140 117 [2] Montini T, Melchionna M, Monai M and Fornasiero P 2016 Chem. Rev. 116 5987 [3] Pryde A K A, Vyas S, Grimes R W, Gardner J A and Wang R P 1995 Phys. Rev. B 52 13214 [4] Campbell C T and Peden C H F 2005 Science 309 713 [5] Wu X P and Gong X Q 2016 Phys. Rev. Lett. 116 086102 [6] Skorodumova N V, Baudin M and Hermansson K 2004 Phys. Rev. B 69 075401 [7] Duprez D, Descorme C, Birchem T and Rohart E 2001 Top. Catal. 16 49 [8] Lemaux S, Bensaddik A, van der Eerden A M J, Bitter J H and Koningsberger D C 2001 J. Phys. Chem. B 105 4810 [9] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G and Rosei R 2005 Science 309 752 [10] Trovarelli A and Llorca J 2017 ACS Catalysis 7 4716 [11] Su Z, Yang W, Wang C, Xiong S, Cao X, Peng Y, Si W, Weng Y, Xue M and Li J 2020 Environ Sci. Technol. 54 12684 [12] Schmokel M S, Bjerg L, Larsen F K, Overgaard J, Cenedese S, Christensen M, Madsen G K H, Gatti C, Nishibori E, Sugimoto K, Takata M and Iversen B B 2013 Acta Crystall. A-Found. Adv. 69 570 [13] Kasai H, Tolborg K, Sist M, Zhang J, Hathwar V R, Filso M O, Cenedese S, Sugimoto K, Overgaard J, Nishibori E and Iversen B B 2018 Nat. Mater. 17 249 [14] Jiang B and Zuo J M, Jiang N, O'Keeffe M and Spence J C H 2003 Acta Crystall. A-Found. Adv. 59 341 [15] Zhang C. W, Li H A, Dong J M, Guo Y Q and Li W 2006 Chin. Phys. Lett. 23 1581 [16] Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583 [17] Streltsov V A, Nakashima P N H and Johnson A W S 2001 J. Phys. Chem. Solids 62 2109 [18] Bader R F W 1991 Chem. Rev. 91 893 [19] Bader R F W and Essen H 1984 J. Chem. Phys. 80 1943 [20] Coppens P, Iversen B and Larsen F K 2005 Coord Chem. Rev. 249 179 [21] Chavan S V and Tyagi A K 2006 Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. 433 203 [22] Reddy B M, Khan A, Lakshmanan P, Aouine M, Loridant S and Volta J C 2005 J. Phys. Chem. B 109 3355 [23] Gao C, Genoni A, Gao S, Jiang S, Soncini A and Overgaard J 2020 Nat. Chem. 12 213 [24] Nishibori E, Sunaoshi E, Yoshida A, Aoyagi S, Kato K, Takata M and Sakata M 2007 Acta Crystall. A-Found. Adv. 63 43 [25] Overgaard J, Larsen F K, Schiott B and Iversen B B 2003 J. Am. Chem. Soc. 125 11088 [26] Scherer W, Hauf C, Presnitz M, Scheidt E W, Eickerling G, Eyert V, Hoffmann R D, Rodewald U C, Hammerschmidt A, Vogt C and Pöttgen R 2010 Angew. Chem. Int. Edit. 49 1578 [27] Shen B, Chen X, Cai D, Xiong H, Liu X, Meng C, Han Y and Wei F 2020 Adv. Mater. 32 1906103 [28] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212 [29] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 [30] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15 [31] Zhang C W, Zhang Z, Wang S Q, Li H, Dong J M, Xing N S, Guo Y Q and Li W 2007 Chin. Phys. Lett. 24 524 [32] Kong F, Liang C, Wang L, Zheng Y, Perananthan S, Longo R C, Ferraris J P, Kim M and Cho K 2019 Adv. Energy Mater. 9 1802586 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [34] Blöchl P E 1994 Phys. Rev. B 50 17953 [35] Streltsov V A, Belokoneva E L, Tsirelson V G and Hansen N K 1993 Acta Crystall. B-Struct. Sci. 49 147 [36] Petricek V, Dusek M and Palatinus L 2014 Z. Kristallogr.-Crystall. Mater. 229 345 [37] Zuo J M, Kim M, O'Keeffe M and Spence J C H 1999 Nature 401 49 [38] Cao J, Guo C and Zou H 2009 J Solid State Chem. 182 555 [39] Svane B, Tolborg K, Jorgensen L R, Roelsgaard M, Jorgensen M R V and Iversen B B 2019 Acta Crystall. A-Found. Adv. 75 600 [40] Coppens P, Holladay A and Stevens E D 1982 J. Am. Chem. Soc. 104 3546 [41] Skorodumova N V, Ahuja R, Simak S I, Abrikosov I A, Johansson B and Lundqvist B I 2001 Phys. Rev. B 64 115108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|