Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107102    DOI: 10.1088/1674-1056/ac7457
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Origin of the low formation energy of oxygen vacancies in CeO2

Han Xu(许涵)1,2, Tongtong Shang(尚彤彤)1,2,‡, Xuefeng Wang(王雪锋)1,2, Ang Gao(高昂)1,2, and Lin Gu(谷林)1,2,3,†
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Oxygen vacancies play a crucial role in determining the catalytic properties of Ce-based catalysts, especially in oxidation reactions. The design of catalytic activity requires keen insight into oxygen vacancy formation mechanisms. In this work, we investigate the origin of oxygen vacancies in CeO2 from the perspective of electron density {via} high-energy synchrotron powder x-ray diffraction. Multipole refinement results indicate that there is no obvious hybridization between bonded Ce and O atoms in CeO2. Subsequent quantitative topological analysis of the experimental total electron density reveals the closed-shell interaction behavior of the Ce—O bond. The results of first-principles calculation indicate that the oxygen vacancy formation energy of CeO2 is the lowest among three commonly used redox catalysts. These findings indicate the relatively weak bond strength of the Ce—O bond, which induces a low oxygen vacancy formation energy for CeO2 and thus promotes CeO2 as a superior catalyst for oxidation reactions. This work provides a new direction for design of functional metal oxides with high oxygen vacancy concentrations.
Keywords:  CeO2      oxygen vacancy      synchrotron x-ray diffraction      electron-density distribution  
Received:  17 April 2022      Revised:  21 May 2022      Accepted manuscript online: 
PACS:  71.20.Eh (Rare earth metals and alloys)  
  61.72.jd (Vacancies)  
  61.05.cp (X-ray diffraction)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: This work was supported by the Beijing Natural Science Foundation (Grant No. Z190010), the National Key R&D Program of China (Grant No. 2019YFA0308500), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), the Key Research Projects of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC035), and the National Natural Science Foundation of China (Grant Nos. 51421002, 51672307, 51991344, and 52025025).
Corresponding Authors:  Lin Gu, Tongtong Shang     E-mail:  l.gu@iphy.ac.cn;shangtt@iphy.ac.cn

Cite this article: 

Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林) Origin of the low formation energy of oxygen vacancies in CeO2 2022 Chin. Phys. B 31 107102

[1] Kamal M S, Razzak S A and Hossain M M 2016 Atmos. Environ. 140 117
[2] Montini T, Melchionna M, Monai M and Fornasiero P 2016 Chem. Rev. 116 5987
[3] Pryde A K A, Vyas S, Grimes R W, Gardner J A and Wang R P 1995 Phys. Rev. B 52 13214
[4] Campbell C T and Peden C H F 2005 Science 309 713
[5] Wu X P and Gong X Q 2016 Phys. Rev. Lett. 116 086102
[6] Skorodumova N V, Baudin M and Hermansson K 2004 Phys. Rev. B 69 075401
[7] Duprez D, Descorme C, Birchem T and Rohart E 2001 Top. Catal. 16 49
[8] Lemaux S, Bensaddik A, van der Eerden A M J, Bitter J H and Koningsberger D C 2001 J. Phys. Chem. B 105 4810
[9] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G and Rosei R 2005 Science 309 752
[10] Trovarelli A and Llorca J 2017 ACS Catalysis 7 4716
[11] Su Z, Yang W, Wang C, Xiong S, Cao X, Peng Y, Si W, Weng Y, Xue M and Li J 2020 Environ Sci. Technol. 54 12684
[12] Schmokel M S, Bjerg L, Larsen F K, Overgaard J, Cenedese S, Christensen M, Madsen G K H, Gatti C, Nishibori E, Sugimoto K, Takata M and Iversen B B 2013 Acta Crystall. A-Found. Adv. 69 570
[13] Kasai H, Tolborg K, Sist M, Zhang J, Hathwar V R, Filso M O, Cenedese S, Sugimoto K, Overgaard J, Nishibori E and Iversen B B 2018 Nat. Mater. 17 249
[14] Jiang B and Zuo J M, Jiang N, O'Keeffe M and Spence J C H 2003 Acta Crystall. A-Found. Adv. 59 341
[15] Zhang C. W, Li H A, Dong J M, Guo Y Q and Li W 2006 Chin. Phys. Lett. 23 1581
[16] Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583
[17] Streltsov V A, Nakashima P N H and Johnson A W S 2001 J. Phys. Chem. Solids 62 2109
[18] Bader R F W 1991 Chem. Rev. 91 893
[19] Bader R F W and Essen H 1984 J. Chem. Phys. 80 1943
[20] Coppens P, Iversen B and Larsen F K 2005 Coord Chem. Rev. 249 179
[21] Chavan S V and Tyagi A K 2006 Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. 433 203
[22] Reddy B M, Khan A, Lakshmanan P, Aouine M, Loridant S and Volta J C 2005 J. Phys. Chem. B 109 3355
[23] Gao C, Genoni A, Gao S, Jiang S, Soncini A and Overgaard J 2020 Nat. Chem. 12 213
[24] Nishibori E, Sunaoshi E, Yoshida A, Aoyagi S, Kato K, Takata M and Sakata M 2007 Acta Crystall. A-Found. Adv. 63 43
[25] Overgaard J, Larsen F K, Schiott B and Iversen B B 2003 J. Am. Chem. Soc. 125 11088
[26] Scherer W, Hauf C, Presnitz M, Scheidt E W, Eickerling G, Eyert V, Hoffmann R D, Rodewald U C, Hammerschmidt A, Vogt C and Pöttgen R 2010 Angew. Chem. Int. Edit. 49 1578
[27] Shen B, Chen X, Cai D, Xiong H, Liu X, Meng C, Han Y and Wei F 2020 Adv. Mater. 32 1906103
[28] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[29] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[30] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[31] Zhang C W, Zhang Z, Wang S Q, Li H, Dong J M, Xing N S, Guo Y Q and Li W 2007 Chin. Phys. Lett. 24 524
[32] Kong F, Liang C, Wang L, Zheng Y, Perananthan S, Longo R C, Ferraris J P, Kim M and Cho K 2019 Adv. Energy Mater. 9 1802586
[33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Streltsov V A, Belokoneva E L, Tsirelson V G and Hansen N K 1993 Acta Crystall. B-Struct. Sci. 49 147
[36] Petricek V, Dusek M and Palatinus L 2014 Z. Kristallogr.-Crystall. Mater. 229 345
[37] Zuo J M, Kim M, O'Keeffe M and Spence J C H 1999 Nature 401 49
[38] Cao J, Guo C and Zou H 2009 J Solid State Chem. 182 555
[39] Svane B, Tolborg K, Jorgensen L R, Roelsgaard M, Jorgensen M R V and Iversen B B 2019 Acta Crystall. A-Found. Adv. 75 600
[40] Coppens P, Holladay A and Stevens E D 1982 J. Am. Chem. Soc. 104 3546
[41] Skorodumova N V, Ahuja R, Simak S I, Abrikosov I A, Johansson B and Lundqvist B I 2001 Phys. Rev. B 64 115108
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[4] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[5] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[6] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[7] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[8] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[9] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[10] Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides
Lei-hao Feng(冯雷豪), Qi-wei Hu(胡启威), Li Lei(雷力), Lei-ming Fang(房雷鸣), Lei Qi(戚磊), Lei-lei Zhang(张雷雷), Mei-fang Pu(蒲梅芳), Zi-li Kou(寇自力), Fang Peng(彭放), Xi-ping Chen(陈喜平), Yuan-hua Xia(夏元华), Yohei Kojima(小岛洋平), Hiroaki Ohfuji(大藤宏明), Duan-wei He(贺端威), Bo Chen(陈波), Tetsuo Irifune(入舩徹男). Chin. Phys. B, 2018, 27(2): 026201.
[11] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[12] First-principles investigation on N/C co-doped CeO2
Rong-Kang Ren(任荣康), Ming-Ju Zhang(张明举), Jian Peng(彭健), Meng Niu(牛猛), Jian-Ning Li(李健宁), Shu-Kai Zheng(郑树凯). Chin. Phys. B, 2017, 26(3): 036102.
[13] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
[14] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[15] First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2
Wei Zhang(张玮), Jie Huang(黄洁). Chin. Phys. B, 2016, 25(5): 057103.
No Suggested Reading articles found!